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ABSTRACT 
In chronic pain physical rehabilitation, physiotherapists adapt 
exercise sessions according to the movement behavior of 
patients. As rehabilitation moves beyond clinical sessions, 
technology is needed to similarly assess movement behaviors 
and provide such personalized support. In this paper, as a first 
step, we investigate automatic detection of protective behavior 
(movement behavior due to pain-related fear or pain) based on 
wearable motion capture and electromyography sensor data. We 
investigate two recurrent networks (RNN) referred to as stacked-
LSTM and dual-stream LSTM, which we compare with related 
deep learning (DL) architectures. We further explore data 
augmentation techniques and additionally analyze the impact of 
segmentation window lengths on detection performance. The 
leading performance of 0.815 mean F1 score achieved by stacked-
LSTM provides important grounding for the development of 
wearable technology to support chronic pain physical 
rehabilitation during daily activities. 
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Figure 1: MoCap and sEMG sequences of CLBP patient 
(showing protective behavior) and healthy participant 
performing stand-to-sit-to-stand. The average upper 
envelope of sEMG data from the lower back is presented. 

1 Introduction 
Physical rehabilitation is an important part of the management 
of chronic pain (CP), where pain associated with dysfunction in 
the nervous system (rather than tissue damage) leads to impaired 
engagement in everyday physical activities [1, 2]. Maladaptive 
strategies or protective behaviors (e.g. rigidity or stiffness in 
movement, use of support) [3] emerge from fear and low self-
efficacy of/for the movements that are essential to these 
activities [4, 5, 33, 34, 36]. To address these underlying factors, 
physiotherapists adapt the type and amount of feedback and the 
forms of activities prescribed based on their observations of the 
strategies a patient uses during physical rehabilitation sessions 
in pain management programs [6, 35]. As the rehabilitation is 
moving from clinical settings to home-based self-management, 
technology should be able to provide similar services by 
detecting these behaviors [35]. Wearable body sensing 
technology provides unique opportunities for physical 
rehabilitation in that: i) it can enable personalized, real-time 
feedbacks to be accessible to patients outside of clinical settings; 
and ii) it can be used ubiquitously as physical rehabilitation at 
home comprise unconstraint daily activities. To fully realize the 
potential of body sensing technology for such everyday settings, 
it is important to understand the feasibility of automatic 
assessment of movement behaviors in people with chronic pain. 
In this paper, we address this with an investigation of automatic 
detection of protective behaviors based on data captured using 
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wearable motion capture (MoCap) and surface electromyography 
(sEMG) sensors (see Figure 1). Our contributions can be 
summarized as: 

1. We investigate the possibility of using deep learning to
detect protective behavior within activity segments 
from a variety of activities. 

2. We explore two possible augmentation methods for
MoCap and sEMG data to enable deep learning, 
namely, jittering and random discarding. 

3. We analyze the impact of the sliding window
segmentation with different window lengths on the 
modeling across activity types. 

2 Related Works 
The majority of the work done on automatic detection of pain 
behavior (including protective behavior) has been on automatic 
differentiation of people with CP from healthy control 
participants, as in the studies of [13, 14, 15] on lower back and 
neck CP. Protective behavior is also seen as a cue of low self-
efficacy, and [11] proposed to use feature-engineering methods 
to characterize it. [9, 10, 35] further provides evidence that low-
cost body sensing technology can enable the detection of pain 
related experiences in functional activities. One study along this 
line is by Aung et al. [16], where a new dataset called EmoPain 
dataset [8] is used, which remains the only chronic pain body 
movement dataset available. From each activity instance, they 
computed the range of each joint angle, the mean energy, and 
the mean of the upper-envelope of rectified sEMG data for the 4 
bilateral upper and lower back muscle activities. Random forest 
was used on these features to detect protective behavior during 
different activities, which achieved mean square errors between 
0.019 to 0.034 (mean=0.04, std=0.16). A limitation of these works 
is the use of activity-dependent feature and non-temporal 
approaches to model the behaviors, which lacks generalization 
ability to other activities.  
Findings in human activity recognition (HAR) literature further 
point to the efficacy of DL networks for this direction. To name a 
few, [17] used a bi-directional LSTM (Bi-LSTM) to classify 
physical activities. They obtained mean F1 scores of 0.75 and 0.94 
in the Opportunity [18] and PAMAP2 [19] datasets respectively 
based on hold-out validation. In another work, [20] achieved 
mean F1 scores of 0.73 and 0.85, based on hold-out validation, 
respectively on the same datasets using an ensemble of two-
layer LSTM networks with dropouts after each layer. This 
method further led to mean F1 score of 0.92 on the Skoda dataset 
[21]. Another study [22] used a stack of three convolutional 
layers (with max pooling after the first two), an LSTM layer, and 
a dense layer (with softmax activation) to classify physical 
activities in the Opportunity dataset and the Skoda dataset. [17] 
further used a three-layer LSTM network to automatically detect 
freezing behavior in people with Parkinson’s while they 
performed walking, they obtained mean F1 score of 0.76 based 
on data from the Daphnet Gait [23] dataset. Here the freezing 
behavior would usually interrupt the activity rather than 
modifying the way it is performed. Hence, the recognition of 
freezing behavior is deemed as the recognition of a new activity 

type (freezing). 
In this paper, we build on the HAR literatures but to capture 
protective behavior within activities rather than the activity 
itself. We also aim to understand if such behavior can be 
detected independently of the type of activity performed within 
a pool of five daily activities considered demanding by people 
with CP. We choose LSTM-based architectures as they can better 
capture the dynamic aspect for automatic detection of protective 
behavior and compare them with convolution-based networks.  

3 Building Recurrent Networks with LSTM 
Given the inherent dynamic and temporal nature of MoCap and 
sEMG data, we consider RNNs for our task. At the core of any 
RNN architecture is the processing unit. One of the most widely 
applied unit in RNNs is the LSTM [27] which solved the gradient 
vanishing problem which traditional RNNs face in 
backpropagation over a long period. Every LSTM unit updates its 
internal states based on previous information. To extract long-
term temporal information in the direction natural to the 
expression of protective behavior in physical activities, we 
choose forward information passing for our architecture. 
Nevertheless, we experiment with the bi-directional information 
processing architecture (Bi-LSTM) to explore the difference. The 
LSTM unit that we use is the vanilla variant without peephole 
connection [28]. In this paper, the first RNN we applied is built 
by stacking such LSTM layers as shown in Figure 2 (a). An 
experiment on the number of LSTM units and layers was 
conducted and we found that the optimal combination is a 3-
layer network with 32 hidden units in each. In this paper, we 
refer to this network as stacked-LSTM. 

Figure 2: (a) The applied RNN with LSTM layers stacked; 
(b) The dual-stream LSTM. 

The input of a LSTM unit is the current input data 𝒙𝒕, previous 
hidden state 𝒉𝒕$𝟏 and the previous cell state 𝒄𝒕$𝟏, while the 
output is the current hidden state 𝒉𝒕 and cell state 𝒄𝒕. Here, the 
input data 𝒙𝒕 is equal to a single sample in the frame at timestep 
t. Within each LSTM unit, the Input Gate with output 𝒊𝒕, Forget
Gate with output 𝒇𝒕, Output Gate with output 𝒐𝒕 and Cell Gate 
with output 𝒄+𝒕 are updated as: 

𝝋𝒕 = . /
01234(𝑾𝒙∗𝒙𝒕 +𝑾𝒉∗𝒉𝒕$𝟏 + 𝒃∗) (1) 
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𝒄𝒕 = 𝒇𝒕⨀𝒄𝒕$𝟏 + 𝒊𝒕⨀	𝒄+𝒕  ,  𝒉𝒕 = 𝒐𝒕⨀ tanh(𝒄𝒕)	 (2) 

𝜎(𝑥) = (1 + 𝑒$D)$E  ,  tanh(𝑥) =
FG−F−G

FG+F−G
(3) 

where 𝝋𝒕 ∈ {𝒊𝒕, 𝒇𝒕, 𝒐𝒕, 𝒄+𝒕} with the 𝑡𝑎𝑛ℎ function only used for 
𝒄+𝒕, ⨀ denotes the element-wise multiplication, 𝑾𝒙∗ and 𝑾𝒉∗ are 
weight matrices and 𝒃∗ are bias vectors.  

The processing at next timestep t + 1 takes the current output 𝒄𝒕 
and 𝒉𝒕 to iterate the same computation. For the current input 
frame 𝑿𝑻 = [𝒙𝒕, 𝒙𝒕S𝟏, … , 𝒙𝒕S𝑵]  (generated by sliding-window 
segmentation with length of N+ 1), given the last output hidden 
state 𝒉𝒕S𝑵 from the last LSTM layer, the class probability 𝒑 =
[𝑝E,… , 𝑝Z] where 𝐾 denotes the number of classes (in our case 
𝐾 = 2) and the final label prediction 𝑌 are computed as: 

𝒑 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑾𝒉𝑲𝒉𝒕S𝑵 + 𝒃𝑲)  ,  𝑌 = 𝑎𝑟𝑔max
[E,Z]

(𝒑) (4) 

where 𝑾𝒉𝑲 and 𝒃𝑲 are the learnable weight matrix and bias 
vector of the last fully-connected layer in the network. 
Based on stacked-LSTM network, a variant can be created by 
using two streams of such network, where the MoCap and sEMG 
data are processed separately and combined at feature level. We 
refer to this architecture as dual-stream LSTM which is shown in 
Figure 2 (b). Each LSTM block represents the temporal 
processing part similar to stacked-LSTM.  

4 Data Preparation 
The EmoPain dataset [8] contains MoCap and sEMG data 
collected from 26 healthy participants and 22 chronic lower-back 
pain (CLBP) patients doing typically feared activities. We use 
this dataset to learn patterns of protective behavior exhibited by 
CLBP patients during different activities. Four expert raters (2 
physiotherapists and 2 clinical psychologists) labelled the data by 
indicating the starting and ending points of protective behavior 
and its type. The data from healthy participants were all labelled 
as non-protective. Whilst the dataset contains 22 patients, 4 
patients were left out because of errors in their sEMG data 
recordings. To avoid biasing the model towards healthy 
participants, only 12 healthy people were randomly used. 
Figure 1 shows avatar examples of protective and non-protective 
behaviors from the EmoPain dataset. Differently from the top 
healthy participant, the stick figures of the CLBP patient do not 
bend the trunk but exploit the leg muscles to lower him/herself 
to the seat, a strategy further facilitated by twisting the trunk to 
minimize the use of the left (possibly painful) part of the back. 
The five activities we chose to model from the EmoPain dataset 
are bending, stand-on-one-leg, sit-to-stand, stand-to-sit and 
reach-forward, while the rest represents transition movements 
like standing still, sitting still and walking around. In total, we 
have 46 activity instances from the CLBP and healthy subjects, 
where each instance lasts 10 minutes or so. Additionally, for the 
MoCap data, we compute angles and energies, instead of using 
the raw Euclidean positions. This is because the angle is 
invariant to the change of joint position in the movement space 
and also to provide better representation with smaller 
dimensionality of body movement [32]. At each timestep, a total 

of 13 angles are calculated in 3D space as suggested in [8] based 
on the 26 anatomical points to describe the local movements of 
the body, where the energies are the square of their respective 
angular velocities. For the muscle activity, we use the upper 
envelope of the rectified sEMG to provide smooth and denoised 
representation of the raw data. 

4.1 Data Segmentation 
For both the training and testing set, a sliding-window 
segmentation method [30] is applied to generate frames of 
continuous portions of the data instances. The size of the sliding-
window was selected upon an in-depth analysis based on the 
different activity types (discussed in section 5.3). Using the best 
parameter which emerged from this analysis (window length of 
3 seconds with overlapping ratio of 75%), the segmentation done 
on the 46 movement instances led to 2646 frames. 
4.1.1 Ground truth computation. Due to the limited data size, for 
the five categories of protective behavior (e.g., guarding, 
hesitation, support, abrupt motion and stimulation) [8], we 
combined them into one special class named protective behavior. 
Such practice lead to a binary detection task discriminating 
between protective and non-protective behavior. To compensate 
for the disagreement between the expert raters, we define the 
ground truth of each frame using the majority-voting rule: a 
frame is labelled as protective if no less than 50% percent of the 
included samples were marked as protective by at least 2 raters.  

4.2 Data Augmentation 
To enable the training of DL networks on a comparatively small 
dataset we apply two different data augmentation methods 
aimed to simulate real-life situations as patients wear the 
sensors: i) Jittering [12], which is to simulate the signal noise that 
may exist during data capturing in real life. We create normal 
Gaussian noise under three standard deviations of 0.05, 0.1, 0.15 
and globally add each to the original data; ii) Random Discarding 
(similar to cropping [12]), which is to simulate unexpected data 
loss at some points during the recording. We randomly set the 
data at some timesteps as well as body parts to 0 with selection 
probabilities of 5%, 10% and 15%.  
All these data augmentation methods do not change the 
temporal order of the data neither the movements to a noticeable 
degree. Therefore, the ground truth labels stay unchanged. After 
testing the two data augmentation methods with stacked-LSTM 
on the entire dataset, we found that the performance was 
improved (about 18% higher mean F1) with a combination of 
them. Consequently, we use the combination of these two 
approaches as the default augmentation method for all the DL 
architectures used for comparisons. The number of frames 
created after using such combined augmentation method is 
18,653 (before is 2646), where 11373 frames are labelled as non-
protective (from both healthy participants and patients) with 
7280 frames as protective (only from the patients). 

5 Experiments 
For comparison purposes, all the neural networks used in our 
experiments employed the Adam [29] optimizer to update the 
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weights. During training, we used a mini-batch size of 20 and a 
fixed learning rate of 0.001. The deep learning methods are 
implemented using Keras with TensorFlow backend. The 
hardware used is a workstation with Intel i7 8700K CPU. No 
GPU acceleration is employed. 
Aside from the two architectures described earlier, namely 
stacked-LSTM and dual-stream LSTM, we use a CNN, a Conv-
LSTM and a Bi-LSTM proposed in HAR scenarios [24, 22, 17] for 
comparison. An optimization experiment was conducted to find 
the optimal hyper-parameter settings of these methods: i) For 
stacked-LSTM, three LSTM layers each with 32 hidden units 
followed by a dropout layer with probability of 0.5 are used; ii) 
For dual-stream LSTM, two sets of 3 LSTM layers each with 24 
hidden units and 8 hidden units followed by dropout layer with 
probability of 0.5 are used respectively for the MoCap and sEMG 
streams; iii) For CNN [24], three convolutional layers each with 
10 kernels of size 1 × 10 and followed by 1 × 2 max-pooling 
layer are used, and a softmax layer in the end is used for 
classification; iv) For Conv-LSTM [22], the architecture is used 
with 10 kernels of size 1 × 10  in each convolutional layer 
followed by max-pooling of size 1 × 2, and the number of hidden 
units of each LSTM layer is set to 32; v) For Bi-LSTM [17], 3 bi-
directional LSTM layers with 16 hidden units in each are used. 
Here we need to mention that, the reason we found kernel size 
of 1 × 10 is better than the popular one (e.g., 1 × 5) could be 
that, given the input size of 𝑁 × 180 × 30 (N is the number of 
samples), such temporal length (180) demand larger kernel size. 
Given that in our scenario the detection of both protective and 
non-protective behaviors is similarly important, we report mean 
F1 score as the metric for both outcomes 

5.1 Comparison of DL Architectures 
The comparison results with leave-one-subject-out validation 
(LOSO) are shown in Table 1. We can see that stacked-LSTM 
achieves the best F1 score of 0.815 and is about 12% and 5% 
respectively higher than CNN and Conv-LSTM. Here we also 
conducted a repeated measures ANOVA between these methods 
and an effect of methods on performances is found: F(0.651, 
4.054)=6.311, p<0.001, µ2=0.179. Post-hoc paired t-tests with 
Bonferroni corrections further show that stacked-LSTM 
performs significantly better than CNN and Conv-LSTM (p=0.003 
and 0.032). However, significant differences are not found 
between Bi- LSTM, dual-stream LSTM and stacked-LSTM, which 
suggest that the variants created within the LSTM framework 
lead to better results than convolution-based ones but the 
different types of LSTM architecture used does not contribute to 
the effect. 

5.2 DL model and Human Experts Agreement
For the 18 folds in the LOSO validation where testing subjects 
are patients, we further compute two-way mixed, absolute 
agreement intraclass correlations (ICCs) to compare the level of 
agreement between the ground truth labels we generated by 
majority-voting and the stacked-LSTM with what between the 
expert raters. The ICC is a standard method for computing 
interrater agreement [25] and the two-way mixed model was 
used to account for the rater effect [31]. We found ICC = 0.215  

Metrics 

DL architectures Acc Mean F1 p-value (<0.05) 

CNN 0.7736 0.697 0.003 
Conv-LSTM 0.7913 0.767 0.032 

Bi-LSTM 0.8033 0.794 >0.05 
Dual-LSTM 0.8035 0.795 >0.05 

Stacked-LSTM 0.8686 0.815 - 

Table 1: Comparison results for the DL architectures. 

Figure 3: (a) The duration distribution of activity instances 
in EmoPain dataset. 60 samples are equal to 1 second; (b) 
The detection performances across different window 
lengths within different activities, the dotted-line is at 
window length of 3s. 
(single measures) and 0.523 (average measures) with p=4.3e-130, 
between the raters, and ICC=0.568 (single measures) and 0.724 
(average measures) with p=3.1e-159, between stacked-LSTM and 
the ground truth. This finding suggests that stacked-LSTM 
reaches excellent level of agreement with the average expert 
rater (the ground truth created by majority-voting), which aligns 
with the goal of our modelling.

5.3  Segmentation Analysis 
The sliding-window segmentation approach used for the 
comparison of DL architectures is based on a window length of 3 
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seconds with overlapping ratio of 75%. The boxplot in Figure 3 
(a) shows the duration of activity instances in the EmoPain 
dataset. As is shown, there are strong differences between the 
durations of the different activity types and even between 
instances within the same activity type. This is possibly due to 
people’s different physical and psychological (fear, anxiety) 
capabilities. [26] suggested that the window length need to be 
adjusted to different types of activity. Consequently, we use the 
stacked-LSTM to run experiments on different activity types 
separately with frames generated by different window lengths 
while using a fixed overlapping ratio of 75%. Results (Figure 3 
(b)) show that the window length affects the detection result 
(mean F1-score) to some degree for most activity types. Except 
for the different dynamic characteristics of activities, one 
obvious explanation is that the size of training data generated is 
smaller with a longer sliding-window. Still, the best window of 
3s was tested to reach good performance across activities, as 
shown in this figure and in section 5.1 when the recognition of 
protective behavior is done independently of the activity 
performed. 

6 Conclusions 
In this paper, we investigate the possibility of automatically 
detecting frames of protective behavior in people suffering from 
CLBP during emotionally and physically demanding activities. 
The aim is to develop movement- and muscle activity-
recognition wearable technology that can be used to personalize 
feedback and support planning of self-directed (i.e. without a 
clinician) and long-term ubiquitous physical rehabilitation. Using 
the EmoPain dataset (MoCap and sEMG data), we show that the 
recurrent network with LSTM units referred to as stacked-LSTM 
performs much better than the CNN-based models: mean F1score 
of 0.815, while leading to excellent agreement with the average 
expert raters. Another proposed model called dual-stream LSTM 
performed similarly to stacked-LSTM, which showed the good 
potential of using better architecture that pay respect to different 
data types. Rather than using the raw data, we make use of very 
low-level features. These features together with the data 
augmentation methods make it more feasible to model the 
protective behavior with basic deep learning architectures. We 
additionally provide evidence of the impact of sliding-window 
lengths on detection performance and we suggest that the choice 
be based on some knowledge of the dataset. The results suggest 
that this parameter is affected by the duration of the movement 
but also by the complexity of the movement as the temporal 
characteristic varies. Still, generalization can be achieved 
without a critical loss in performance. 

7 Acknowledgement 

Chongyang Wang is supported by the UCL Overseas Research 
Scholarship (ORS) and Graduate Research Scholarship (GRS). 

REFERENCES 
[1] Breivik, H., et al. (2006). Survey of chronic pain in Europe: Prevalence, impact 

on daily life, and treatment. European Journal of Pain, 10 (4), 287. 
[2] Tracey, I. et al. (2009). How Neuroimaging Studies Have Challenged Us to 

Rethink: Is Chronic Pain a Disease? Journal of Pain, 10 (11), 1113-1120. 
[3] Keefe, F. J. et al. (1982). Development of an observation method for assessing 

pain behavior in chronic low back pain patients. Behavior Therapy. 
[4] Vlaeyen, J. W. S. et al. (2000). Fear-avoidance and its consequences in chronic 

musculoskeletal pain: A state of the art. Pain, 85 (3), 317-332. 
[5] Vlaeyen, J. W. S., et al. (2016). The experimental analysis of the interruptive, 

interfering, and identity-distorting effects of chronic pain. Behaviour Research 
and Therapy, 86, 23-34. 

[6] Singh, A., et al. (2014). Motivating People with Chronic Pain to do Physical 
Activity: Opportunities for Technology Design. Proceedings of the SIGCHI 
Conference on Human Factors in Computing Systems (CHI), 2803-2812. 

[7] Singh, A., et al. (2016). Go-with-the-Flow: Tracking, Analysis and Sonification 
of Movement and Breathing to Build Confidence in Activity Despite Chronic 
Pain. Human–Computer Interaction, 31 (3-4), 335-383. 

[8] Aung, MSH, et al. (2016). The automatic detection of chronic pain-related 
expression: requirements, challenges and the multimodal EmoPain dataset. 
IEEE Transactions on Affective Computing, 7 (4), 435-451. 

[9] Olugbade, T. A., et al. (2014). Bi-Modal Detection of Painful Reaching for 
Chronic Pain Rehabilitation Systems. Proceedings of the 16th International 
Conference on Multimodal Interaction (ICMI), 455–458. 

[10] Olugbade, T. A., et al. (2015). Pain Level Recognition using Kinematics and 
Muscle Activity for Physical Rehabilitation in Chronic Pain. International 
Conference on Affective Computing and Intelligent Interaction (ACII), 243-
249. 

[11] Olugbade, T. A., et al. (2018). Human Observer and Automatic Assessment of 
Movement Related Self-Efficacy in Chronic Pain: from Movement to 
Functional Activity. IEEE Transactions on Affective Computing.  

[12] Um, Terry Taewoong et al. (2017). Data augmentation of wearable sensor data 
for Parkinson's disease monitoring using convolutional neural networks. 
arXiv preprint arXiv:1706.00527. 

[13] Watson, P. J., et al. (1997). Evidence for the Role of Psychological Factors in 
Abnormal Paraspinal Activity in Patients with Chronic Low Back Pain. 
Journal of Musculoskeletal Pain, 5 (4), 41-56. 

[14] Ahern, D. K., et al. (1988). Comparison of lumbar paravertebral EMG patterns 
in chronic low back pain patients and non-patient controls. Pain, 34(2), 153-
160. 

[15] Grip, H., et al. (2003). Classification of Neck Movement Patterns Related to 
Whiplash-Associated Disorders Using Neural Networks. IEEE Transactions on 
Information Technology in Biomedicine, 7 (4), 412-418. 

[16] Aung, MSH, et al. (2014). Automatic recognition of fear-avoidance behavior in 
chronic pain physical rehabilitation. Proceedings of the 8th International 
Conference on Pervasive Computing Technologies for Healthcare (ICPCTH), 
158-161. 

[17] Hammerla, Nils Y., et al. (2016). Deep, convolutional, and recurrent models for 
human activity recognition using wearables. Proceedings of the 25th 
International Joint Conference on Artificial Intelligence.  

[18] Chavarriaga, Ricardo, et al. (2013). The Opportunity challenge: A benchmark 
database for on-body sensor-based activity recognition. Pattern Recognition 
Letters, 34 (15), 2033-2042. 

[19] Reiss, Attila et al. (2012). Introducing a new benchmarked dataset for activity 
monitoring. 16th International Symposium on Wearable Computers (ISWC), 
108-109.  

[20] Guan, Yu et al. (2017). Ensembles of deep lstm learners for activity recognition 
using wearables. Proceedings of ACM on Interactive, Mobile, Wearable, 
Ubiquitous Technologies (IMWUT), 1 (2), 11.  

[21] Daniel Roggen, et al. (2008). Wearable activity tracking in car manufacturing. 
IEEE Pervasive Computing, 1 (2), 42-50. 

[22] Morales, Francisco Javier Ordóñez et al. (2016). Deep convolutional feature 
transfer across mobile activity recognition domains, sensor modalities and 
locations. 20th International Symposium on Wearable Computers (ISWC), 92-
99.  

[23] Bachlin, Marc, et al. (2009). Potentials of enhanced context awareness in 
wearable assistants for Parkinson's disease patients with the freezing of gait 
syndrome.  International Symposium on Wearable Computers (ISWC), 123-
130. 

[24] Rad, Nastaran Mohammadian et al. (2016). Applying deep learning to 
stereotypical motor movement detection in autism spectrum disorders. 16th 
International Conference on Data Mining Workshops (ICDMW), 1235-1242. 

[25] McGraw, K. O., et al. (1996). Forming inferences about some intraclass 
correlation coefficients. Psychological methods, 1 (1), 30. 

[26] Huynh, Tâm, et al. (2007). Scalable recognition of daily activities with 
wearable sensors. International Symposium on Location-and Context-
Awareness (LoCA), 50-67.  

229



ISWC ’19, September 9-13, 2019, London, United Kingdom CY. Wang et al. 

[27] Hochreiter, Sepp et al. (1997). Long short-term memory. Neural computation, 
9 (8), 1735-1780.  

[28] Greff, Klaus, et al. (2017). LSTM: A search space odyssey. IEEE transactions on 
neural networks and learning systems, 28 (10), 2222-2232. 

[29] Kingma, Diederik P et al. (2014). Adam: A method for stochastic optimization. 
arXiv preprint arXiv:1412.6980.   

[30] Andreas Bulling et al. (2014). A tutorial on human activity recognition using 
body-worn inertial sensors. ACM Computing Surveys, 46 (3), 33. 

[31] Hallgren KA. (2012). Computing inter-rater reliability for observational data: 
an overview and tutorial. Tutorials in quantitative methods for psychology, 8 
(1), 23. 

[32] Falco, Pietro et al. (2017). A human action descriptor based on motion 
coordination. IEEE Robotics and Automation Letters, 2 (2), 811-818. 

[33] Asghari, A et al. (2017). Pain self-efficacy beliefs and pain behaviour: A 
prospective study. Pain, 94 (1), 85-100. 

[34] Woby, S. R. et al. (2007). Self-efficacy mediates the relation between pain-
related fear and outcome in chronic low back pain patients. European Journal 
of Pain, 11 (7), 711-718. 

[35] Olugbade, T. A et al. (2019). How Can Affect Be Detected and Represented in 
Technological Support for Physical Rehabilitation? ACM Transactions on 
Computer-Human Interaction, 26 (1), 1. 

[36] Olugbade Temi et al. The relationship between guarding, pain, and emotion. 
PAIN Report, 2019. (to appear)  

230




