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Abstract

The nervous system is sensitive to statistical regularities of the external world and forms internal models of these regularities to 
predict environmental dynamics. Given the inherently social nature of human behavior, being capable of building reliable predictive 
models of others’ actions may be essential for successful interaction. While social prediction might seem to be a daunting task, the 
study of human motor control has accumulated ample evidence that our movements follow a series of kinematic invariants, which 
can be used by observers to reduce their uncertainty during social exchanges. Here, we provide an overview of the most salient 
regularities that shape biological motion, examine the role of these invariants in recognizing others’ actions, and speculate that 
anchoring socially-relevant perceptual decisions to such kinematic invariants provides a key computational advantage for inferring 
conspecifics’ goals and intentions.
© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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0. Introduction

Imagine having a meal with a friend. You are enjoying each other’s company when your friend suddenly moves 
his/her hand to reach for something on the table. While this happens, you immediately start to gather information 
about what is going on and look at the shape of the hand as it proceeds toward its goal; for example, you may rule out 
whether your friend wants to grasp a spoon or a bottle. This information might be so compelling that if the object is 
too far from him or her for comfortable reach, you may even choose to pass it on to your friend before the action is 
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over. Without even noticing, you have just taken advantage of one of the kinematic invariants that shape human motor 
behavior – in the example at hand, the maximum grip aperture – not only to understand what was happening, but also 
to modulate your own behavior in a socially congruent manner.

A large body of evidence indicates that the motor repertoires of human beings – and animals in general – are 
characterized by a number of kinematic invariants. However, an overview of all these invariant attributes of motor 
behaviors in a unifying framework is currently missing. The goal of this review is to assess the state of the art in 
this vast field of research on motor control and provide a comprehensive and integrated view on the role that these 
characteristics might play in the perception of others’ actions.

The present review comprises three main parts. In the first part, we will briefly outline some of the most salient in-
variants of biological kinematics. We will discuss how these attributes interdependently shape human motor behaviors, 
spanning multiple hierarchical levels of complexity.

In the second part, we will examine the existing evidence for the role of the same kinematic invariants not just in 
executing movements, but also in recognizing others’ actions and behavioral goals. We will review a large body of 
evidence illustrating how we rely on these characteristics to interpret movements performed by our conspecifics as 
their actions unfold.

Finally, in the third part, we will offer a formal perspective on how the brain could infer and exploit motor invariants 
during action observation. Our proposal starts from the standpoint that the brain uses internal models to control 
movements and these are tuned to the kinematic invariants embedded in human motor behaviors. Evidence for the 
existence of internal models encoding robust environmental invariants – such as gravity – already exists, suggesting 
that the brain is particularly sensitive to regularities in the external world. Crucially, to the extent that the internal 
models used by the brain to control movement are also reused during action observation, the perceptual representations 
that the brain forms of observed movements should be automatically tuned to the same kinematic invariants. Based 
on such arguments, we will discuss the speculative proposal that the main contribution of the motor system – and of 
its internal models – to action observation could be to process kinematic invariants, as these are the most salient and 
stable characteristics of observed movements.

1. Kinematic invariants: regular attributes of biological motor behaviors

Biological motion, i.e. movements “[. . . ] generated by biological agents, such as humans and animals” (Yovel & 
O’Toole [367], p. 384), is characterized by kinematic invariant attributes which, to the best of our knowledge, have not 
been outlined previously in a unifying framework. The present section aims to provide a comprehensive description 
of such kinematic invariants of biological motion, addressing in particular how they may be overall interdependent. 
To this end, we will follow an order of growing complexity from the point of view of the sensorimotor planning and 
control processes. Since the study of human kinematic invariants pertains mostly to actions performed with the upper 
limb (e.g., reaching movements to either point to or grasp something), unless expressly specified, we will use the term 
end-effector to indicate the hand.

“In the motor control literature, you can find many references to invariant characteristics of movements that – a 
moment’s reflection will reveal – you can vary any time you want. As your hand or some tool progresses to a chosen 
target, you can make it go fast, go slow, go straight, curve, stop along the way, or just give up and do something else.” 
(Shadmehr & Wise [295], p. 495). Despite these lines may appear at odds with the very title of the current section, they 
nonetheless highlight some of the main features of motor behaviors: That is, the redundancy [232,148] or, according to 
other perspectives, the abundance [203,202], as well as the equivalence [201,261] of movements. On the one hand, the 
equivalence principle consists in the possibility to perform the same action with different end-effectors (e.g., writing 
with the right and the left hand, by holding the pen between the teeth, etc.; for a classic account see Lashley [201]), 
by virtue of a higher-order generalization of the motor plans (Wing [355]; for an investigation of the neuroanatomical 
and functional bases of this phenomenon, see Rijntjes et al. [266]). On the other hand, the redundancy / abundance 
feature stems directly from the high number of biomechanical degrees of freedom that intrinsically characterizes 
the skeletomotor system, as was first pointed out in 1967 by the Russian neurophysiologist Nikolai Aleksandrovich 
Bernstein (Bernstein, 1967, cited in Bongaardt [43]; cf. von Helmholtz, 1867, cited in Gielen [120]). In light of this, 
the presence of invariants in biological motion – as will be described in the following – might represent a successful 
strategy shaped by evolution, allowing for a reduction of the computational load inherent to the sensorimotor control 
processes while still preserving and exploiting its extreme flexibility.
14



F. Torricelli, A. Tomassini, G. Pezzulo et al. Physics of Life Reviews 44 (2023) 13–47
Fig. 1. Fitts’ law provides a mathematical model of the speed-accuracy trade-off. A. Experimental setup used by Fitts and Peterson [95]. When 
one of the two stimulus lights came on, participants were required to hit the corresponding target as fast as possible with the stylus. (Adapted from 
Fitts & Peterson [95].) B. Relation between the index of difficulty (ID) and movement time (MT). Increasing IDs were obtained by either decreasing 
targets width or increasing movement amplitudes. Single movements (red) consisted in one repetition of an aiming movement from the start button 
to one of the targets [95]. Serial movements (black) consisted in continuous repetitions of aiming movements between targets, without replacing 
the stylus over the start button [94]. (Adapted from Fitts & Peterson [95].)

1.1. Speed-accuracy trade-off and Fitts’ law

In 1899, the psychologist Robert Sessions Woodworth published his doctoral dissertation under the title “The 
Accuracy of Voluntary Movement”, which is currently considered a seminal contribution to the field of sensorimotor 
control (see Newell & Vaillancourt [238]). Although another work – contemporary to his thesis – reported similar 
observations (Martin & Müller, 1899, cited in Heitz [142]), Woodworth was in fact the first to thoroughly describe the 
robust and ubiquitous phenomenon which is now known under the name of speed-accuracy trade-off. By observing 
human participants while they performed aiming movements with the upper limb, he noticed that the velocity of a 
movement is inversely related to the accuracy required by that same movement (Woodworth [364]; for reviews see 
Elliot et al. [87,86]; Heitz [142]).

More than half a century later, the psychologist Paul Morris Fitts Jr. mathematically formalized such behavior for 
both serial [94] and single [95] movements (Fig. 1). Fitts’ law relies on the principles of information theory (see 
Nyquist [240]; Hartley [138]) and, in particular, on the 17th of a series of theorems proposed a few years earlier by the 
engineer and mathematician Claude Elwood Shannon (cf. Shannon [299]). Its original formulation, reported hereafter, 
describes the linear relation existing between the amplitude of a movement, the size of its target and the duration of 
the same movement:

MT = a + b log2
2A

W
(1)

where MT = movement time, A = movement amplitude, and W = target width. Therefore, Fitts quantified the 
accuracy required by a movement as the ratio A

W/2 between its amplitude and the target radius (assuming a circular 
shape) and identified in its binary logarithm – which is commonly used in this theoretical framework to express 
information bits (e.g., see Shannon [299]) – an index of difficulty, ID, of the movement itself [95].

Although a discussion on what could be the correct mathematical expression of equation (1) continued over the 
following years (cf. Welford [351], chap. 5; Welford et al. [352]; MacKenzie [207]; for a review see Hoffmann [149]), 
we will not address the details of this debate as it is beyond the scope of the present review. What seems important 
to underline here is how the speed-accuracy trade-off, as modeled by Fitts’ law, represents an invariant attribute of 
several motor behaviors, involving not only the upper limb but also many other end-effectors (e.g., the lower limb, 
the trunk, etc.; see Hoffmann [150]): That is, movement duration depends on the accuracy requirement of the task 
at hand, a requirement that, in turn, grows linearly as the movement amplitude increases and/or as the target width 
15
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decreases (see Fig. 1B). If we consider reaching for an object with the upper limb, the time necessary to complete the 
movement is systematically affected by the distance that separates the end-effector – either the hand or a tool – from 
such an object, as well as by the object size. Interestingly, a closer examination of the temporal evolution of reaching 
movements further reveals that object size modulates the end-effector velocity early after the movement start (i.e. at 
∼10% of movement duration, according to Ansuini et al. [22]; we will return to the implications of this important 
finding in section 2.2). On the other hand, decreasing movement duration, i.e. increasing its velocity, but keeping 
target size and distance unchanged (thus providing with the same accuracy requirement), leads to an increase in the 
endpoint variability (Schmidt [288]). Given that increasing movement velocity requires the generation of stronger 
force, the variance measured at the endpoint increases as the force developed by muscles increases. This observation 
can be interpreted according to a property of biological systems known as the signal-dependent noise (Berret et al. 
[33]; Takeda et al. [312]): Such an expression refers to processes in which the noise standard deviation depends on the 
signal mean (Shadmehr & Mussa-Ivaldi [297], chap. 4), a phenomenon that will be recalled again in this paper (see 
section 1.4).

1.2. Straight paths and bell-shaped velocity profiles

Despite the high dimensionality resulting from the richness of degrees of freedom that characterizes the skeleto-
motor system (Bernstein, 1967, cited in Bongaardt [43]), in unconstrained circumstances the end-effectors tend to 
move approximately along a straight path (see Shadmehr & Wise [295], chap. 18). In 1981, Morasso was the first to 
describe such regularity, by observing human participants while they reached for targets placed in different positions 
by holding a manipulandum that could move along two dimensions (Morasso [229]; see Fig. 2A). Several studies 
confirmed this finding in humans [302,1,156,101] and reported similar results in both non-human primates [118] and 
other animals [130,129,309]. Noteworthy, such regularity is the result of learning processes that occur early in life 
[143] and, once learned, remains robust even after perturbations are introduced to alter sensorimotor planning and 
control processes. The use of glasses with displacing prisms – a manipulation which has been widely (and still is) 
employed in experimental psychology (e.g., see Rosenbaum [273], chap. 5) – clearly illustrates this point. When sub-
jects are wearing these devices, their visuomotor control appears at first severely compromised. After a short practice, 
they nevertheless become acquainted with the artificial visual displacement and begin again to perform smooth move-
ments characterized by straight paths. The same phenomenon but reverted – an after-effect of such manipulation – is 
observed after the glasses are removed (e.g., see Anguera et al. [18]). Despite some exceptions have been described 
when the hand path is on the vertical plane (cf. Atkeson & Hollerbach [24]; Lacquaniti et al. [196]; Papaxanthis et 
al. [241]) or when movements are performed near the boundaries of the reachable space (cf. Haggard & Richardson 
[132]; Desmurget & Prablanc [79]), a straight path of the end-effectors seems to be a robust regularity which is in-
herent to the sensorimotor planning and control processes (see Fig. 2B) as a result of early learning and optimization 
mechanisms. Indeed, the motor system manages to restore it as rapidly as possible in the presence of perturbations. 
But which kinematic variable(s) could be targeted by such optimization?

When moving an unconstrained end-effector from its starting position to a target, its trajectory – i.e. the variation 
of its path over time – shows a sigmoid profile that, after taking its first derivative (which means computing its tan-
gential velocity), becomes bell-shaped. In other words, the end-effector undergoes a first phase of increasing velocity 
(positive acceleration), it then reaches the peak velocity (null acceleration), to end its motion with a second phase of 
decreasing velocity (negative acceleration) (see Fig. 2C). Remarkably, the organization of goal-directed movements 
in two distinct phases – an initial ‘impulse’ phase followed by a ‘current control’ phase – was again first proposed by 
Woodworth [364] in his influential two-component model of limb control (we will return to this in section 1.5; see also 
Elliot et al. [87,86]). However, photogrammetry-based motion analysis had just been pioneered in the 1880s by the 
photographer Eadweard Muybridge (for a historical review, see Colyer et al. [65]; see also the invention of chronopho-
tography by the French physiologist Étienne Jules Marey in the same period, cited in Pozzo & Pozzo [259]) and was 
still far from being widespread at the time of Woodworth (who used a kymograph), which prevented him from per-
forming thorough quantitative observations in support of his insight. After similar observations were made also for 
saccadic eye movements [61], less than one century later it became clear that the unimodal bell-shaped velocity profile
is an ubiquitous [229,302,1,156,101,100,124], cross-species (Georgopoulos et al. [118]; Bizzi et al. [39,40]; Hogan 
[152,153]; Gutfreund et al. [130,129]; Sumbre et al. [309]) invariant of biological motion, which generalizes for a 
large class of movements (e.g., violin bowing and jaw movements; see Nelson [237]; Gracco & Abbs [126]). Apart 
16



F. Torricelli, A. Tomassini, G. Pezzulo et al. Physics of Life Reviews 44 (2023) 13–47
Fig. 2. Bell-shaped velocity profiles of unconstrained reaching movements. A. Experimental setup used by Morasso [229]. When one of the 
six targets (T1-6) was switched on, participants performed a simple reaching movement toward the active target by means of a manipulandum. 
The active target was switched off as soon as it was reached, then another target became active and participants repeated the movement. (Adapted 
from Morasso [229].) B. When reaching movements are unconstrained, end-effectors move along approximately straight paths. In an experimental 
paradigm similar to the one described in A, participants performed repeated reaching movements from a starting position (black dot) toward one of 
five targets (empty dots) and back. Dashed gray lines show the path of the end-effector in each trial. Colored lines show the path of the end-effector 
in one exemplary trial for each target. (Data from a single participant.) C. Kinematic invariants extrapolated from the data showed in B, normalized 
over movement time (MT). Upper panel: Sigmoid trajectory. Middle panel: Bell-shaped tangential velocity profile. Lower panel: Acceleration. In 
each panel, the average across all trials (black line) is superimposed to the data extracted from the single exemplary trials for each target (colored 
lines) displayed in B.

from displaying a typical shape, tangential velocity further scales with the distance covered: Peak velocity increases 
by increasing the path length [125]. Noteworthy, this characteristic velocity profile remains unchanged despite the 
different and complex patterns of angles and (angular) velocities of the involved joints [229,302,1,156,101]; further, 
its optimization in humans occurs in early infancy [346]. Overall, these findings strongly suggest that the bell-shaped 
velocity profile becomes an invariant attribute of biological motion following a process of optimization aimed at 
learning to smoothly move any end-effector along a straight path.

1.3. The two-thirds power law and the relation between curvature and velocity

Yet, moving an end-effector along a straight path is not always possible. Indeed, a curved path is sometimes 
necessary either because of inherent task constraints (e.g., an obstacle that must be avoided to reach for an object) 
or, more simply, because of the specific goals of the movement at hand (e.g., drawing or handwriting). Although the 
so-called isogony principle – i.e. a piecewise constant ratio between the instantaneous tangential velocity and the 
curvature radius – was initially proposed after observations collected in drawing tasks [345], it turned out that this 
principle only holds for some simple trajectories and could not be generalized to all the movements performed along 
curved paths (cf. Lacquaniti et al. [197]; Flash & Hogan [101]). It was indeed realized that the path usually appears 
17
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Fig. 3. The two-thirds power law describes the relation between path curvature and angular velocity. A. Scribbles provide an example 
of curved end-effector paths. (Adapted from Lacquaniti et al. [197].) B. Diagram illustrating the two-thirds power law. The instantaneous angular 
velocity of the path showed in A is plotted (gray) against the path curvature (C) raised to the power of two-thirds. The average (red line) exemplifies 
the linear relation between the two variables. (Adapted from Lacquaniti et al. [197].)

smooth but not uniform in curvature, the end-effector tangential velocity displays multiple peaks and the local minima 
between adjacent velocity peaks are approximately temporally aligned to the discontinuities in the path curvature 
[1,101] – a robust temporal coupling which can already be observed in infancy [346].

In 1983, Lacquaniti, Terzuolo and Viviani successfully modeled the relation between the instantaneous angular
velocity and the path curvature of an end-effector with the following equation, which is now known as the two-thirds 
power law:

ω (t) = k C(t)
2
3 (2)

where ω(t) = instantaneous angular velocity at time t , k = velocity gain factor, and C(t) = path curvature at 
time t (Lacquaniti et al. [197]; Fig. 3). The value of the velocity gain factor k depends on both the movement total 
time and the length of the trajectory segment [340], but remains approximately constant throughout the execution of 
relatively long tracts of the path [197]. Its changes occur either at points of inflections or, in the particular case of 
drawing movements, at junctions between figural units (e.g., see Viviani & Cenzato [338]). Given that ω(t) = v(t)

r(t)

and C (t) = 1
r(t) (where v(t) = instantaneous tangential velocity at time t , and r(t) = radius of the path curvature 

at time t ), by substituting these quantities in equation (2) and after simplifying, the following relation between the 
instantaneous tangential velocity of an end-effector and the radius of the path curvature is obtained [197]:

v (t) = k r(t)
1
3 (3)

or its equivalent form:

v (t) = k C(t)−
1
3 (4)

In fact, equation (3) [344,336,176,96,34,205,75,219], along with the equivalent equation (4) [54,8,316], is the one 
that is most commonly used in the literature, so that some works even refer to it as the one-third power law (e.g., see 
Levit-Binnun et al. [205], and Thoret et al. [316]).

Overall, the two-thirds power law implies a non-linear increasing in the velocity of the end-effector as path cur-
vature decreases (i.e. as the radius increases). By the same token, as the path radius decreases (i.e. as its curvature 
increases) the end-effector velocity shows a non-linear decreasing, which is in line with the above-mentioned ob-
servation [346,1,101] that each local minimum between two peaks in the tangential velocity is roughly temporally 
aligned with a corresponding local maximum in the path curvature. Although some violations to this model have been 
reported (e.g., cf. Plamondon & Guerfali [253]), the two-thirds power law appears to be a robust property of upper 
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limb movements along curved paths (e.g., see Viviani & Schneider [342]). Other studies have shown that the same 
law applies equally well to movements performed with other end-effectors, such as smooth pursuit eye movements 
[77], speech movements [313] and movements of both the body center of mass [145] and the foot [162] during gait, 
further supporting its ubiquity in human motor behavior (see also Zago et al. [374]).

1.4. A rule to smooth them all: the minimum-jerk model

So far, we have outlined two robust kinematic invariants that characterize the trajectories of biological motion: 
The unimodal bell-shaped velocity profile in movements performed along straight paths, and the two-thirds power 
law which relates instantaneous tangential velocity and curvature in movements performed along non-straight (i.e. 
curved) paths. Notably, both these invariant attributes emerge as solutions adopted by the motor system to address a 
common problem: Performing movements characterized by smooth trajectories beginning from a starting point and 
ending on a target. In light of this, several works have investigated whether one single kinematic parameter could 
provide a general explanation for this typical motor behavior within a framework derived from optimal control theory 
(for a review see Todorov [318]).

In 1982, Hogan analyzed data collected during the performance by human subjects of voluntary movements with 
their upper limb and identified such kinematic parameter in the movement ‘jerk’. Jerk is the third derivative of the 
displacement or, in other words, the rate of change in the acceleration of the end-effector. According to this perspective, 
a movement is smoother the more sensorimotor control processes succeed in minimizing the cost function expressed 
by the following equation:

J = 1
2

T∫

t=0

j(t)2dt (5)

where J = total jerk, T = total time, and j(t) = jerk at time t . Movements with a minimized total jerk are known 
as optimally-smooth – or minimum-jerk – movements [151]. This finding was further confirmed by other works in 
humans [237,101], non-human primates (Hogan [153]) as well as other animals [130,309]. This work demonstrated 
also how the total jerk minimization could accurately model movements performed along curved paths and, therefore, 
already obeying the above-discussed two-thirds power law (see Flash & Hogan [101]; Viviani & Flash [339]; Todorov 
& Jordan [319]).

More generally, it has been argued that each of the invariant attributes of biological motion that we have out-
lined so far – i.e., Fitts’ law, bell-shaped velocity profile, two-thirds power law and the minimum-jerk model – 
could be explained by a unifying minimum-variance theory [137]. This theory relies on the assumption that the sen-
sorimotor processes involved in planning and controlling goal-directed voluntary movements aim to minimize the 
signal-dependent noise (e.g., see Jones et al. [170]; cf. also Wang et al. [348]). Whatever the cost function – if there 
is (only) one – computed by the sensorimotor system is, we chose here to outline in particular the minimum-jerk 
model because it is based on a both measurable as well as observable kinematic parameter, which – better than other 
derivatives of the end-effectors position in space (Flash & Hogan [101]; Richardson & Flash [265]; see also Shadmehr 
& Wise [295], chap. 18; cf. Berret et al. [32]; Polyakov [255]) – robustly describes an invariant attribute of biological 
motion. Discussing whether the brain of humans and other animals might have evolved one (or more) pool(s) and/or 
network(s) of neurons to compute and minimize movement jerk (or other cost functions that have been proposed in 
literature; for a review see Todorov [317]) is however far beyond the aim of the present review.

1.5. Not so smooth after all: movement is organized into submovements

So far, we have highlighted smoothness as a primary feature of goal-directed movements. Yet, Woodworth [364]
again came first to realize that some “little extra movements” often appear towards the end of an aiming movement, 
i.e. during what he denoted as the phase for ‘current control’. Woodworth’s intuition was indeed that after the largest 
initial velocity ‘impulse’, visual (and, to a less extent, kinesthetic) information afford the possibility for applying finer 
adjustments, improving accuracy at the (obvious) expense of movement speed. More than half a century later, reflec-
tions on the speed-accuracy tradeoff continued to be invariably intersected with a lively interest in feedback-based 
models of motor control (Crossman & Goodeve [71]; Keele & Posner [181]; Beggs & Howarth [28]; Carlton [51]; 
19
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Meyer et al. [220]; Elliott et al. [85]). The idea that single aiming movements may actually be composed of multiple, 
discrete units – so-called submovements – reflecting feedback-based error corrections (see Fig. 4, Top) emerged in 
these same years and provided the basis for different quantitative accounts of Fitts’ law. One earliest account – the 
‘deterministic iterative-corrections’ model – posited an incremental process of error reduction that unfolds through 
a series of submovements, each taking a fixed time to cover a fixed fraction of the remaining distance, therefore re-
ducing the error from the previous submovement (residual) by a comparable amount (Crossman & Goodeve [71]; 
Keele [180]). The number of submovements needed to travel a certain distance, and thus the total movement time 
under the model hypothesis, turns out to increase with the movement ID, as entailed by Fitts’ law (see equation (1) in 
section 1.1). In the forthcoming years, several revisions of this initial model were proposed – for example, the influ-
ential ‘stochastic optimized-submovement’ model by Meyer et al. [220] – to incorporate more realistic assumptions 
on neuromotor noise and better account for the accumulating observations on variability in submovements duration 
and spatial accuracy. The impact of visual feedback manipulations on the frequency and properties of submovements 
also became an object of intense investigation, along with the renewed efforts to provide an accurate estimate of 
visuomotor delays [377,85,87,52].

Indeed, the idea that movement is organized into submovements is historically deeply intertwined with the notion 
of an intrinsic lag – or ‘psychological refractory period’ [314,70,335] – within the visuomotor loop. Largely inspired 
by engineering models of feedback-based servo control, investigation on human motor behavior in response to serial 
or continuously changing stimuli (e.g., visual tracking) was proceeding in parallel to the research on aiming move-
ments, and was strongly advocating for a discrete, intermittent nature of motor control [69,335,234,224,226,363]. 
Visuo-motor tracking became a paradigmatic task to probe for intermittency in movement as its feedback-based and 
(apparently) continuous nature enabled to unmask intrinsic discontinuities in the sense-and-correct process (see Fig. 4, 
Bottom). A series of studies both in humans [69,335,234,224,226,222] as well as in non-human primates [224,225]
showed that continuous tracking behavior is marked by regular speed pulses – i.e. submovements – generated with 
periodicity of about 2-3 Hz. Within this theoretical framework, submovements result from intermittent update of the 
motor control signals on the basis of sensory feedback, which eventually translates into small discontinuities in the 
velocity profile [363,226,116,285]. The extent to which submovements production is conditioned by the availability 
of visual feedback and/or susceptible to various types of feedback manipulations (e.g., artificially introduced delays) 
became soon and still is a matter of debate both in the context of continuous tracking [81,291,311] as well as of 
discrete, aiming movements [85,103,158].

Whereas current views mostly acknowledge the corrective nature of submovements [291,248,285,311], some al-
ternative accounts posit that submovements are not the result of an (intermittent) feedback-based controller but rather 
reflect inherent (neuro)functional (e.g., Hogan & Sternad [154]) or biomechanical (e.g., Dounskaia et al. [82]) prop-
erties of movement production and organization. One of such proposals considers submovements as a ‘dynamic 
primitive’, a basic motor unit, whose flexible assembly (also by combination with other primitives) gives rise to 
more complex movement trajectories [154]. In particular, when movement is slowed down and/or lengthened beyond 
a certain limit, it would be unavoidably and automatically split into discrete, possibly overlapped, submovements 
owning stereotyped bell-shaped velocity profiles [242].

Most recently, important evidence is being accumulated also at the neurophysiological level. Some works have 
shown consistent neural modulations time-locked to submovements generation [248,272] and highlighted the in-
volvement of motor oscillatory activity whose frequency (2-4 Hz) closely matches submovements periodicity 
[311,134,166]. Altogether, this suggests that intrinsic oscillatory dynamics in the motor system may map directly 
into movement intermittency, feeding the ongoing debate on continuous vs. intermittent models of motor control with 
novel insights.

Despite being relatively subtle (‘microscopic’) features of movement when compared with other (‘macroscopic’) 
invariants (highlighted previously), submovements certainly represent a stable, invariant, property of how movements 
– especially slower ones (> 400 ms) – are executed. After more than one century from when they were first described 
[364], the neural and computational mechanisms underlying submovements generation as well as their functional 
significance yet remain relevant open questions in the current motor neuroscience literature.
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Fig. 4. Pointing and tracking movements are characterized by submovements. Top. Example trajectory (black line, upper panel) and velocity 
(red line, lower panel) of the upper limb in a pointing task performed by a human subject. The characteristic discontinuities – already observable in 
the trajectory – are most clearly visible in the velocity profile. Gray dots and numbers indicate salient kinematic landmarks: Movement onset (1) is 
followed by the characteristic bell-shaped velocity profile of reaching movements, after which the onset of a corrective submovement (2) precedes 
the overall movement offset (3). (Adapted from Meyer et al. [220]; Original nomenclature: (1) movement beginning, (2) primary submovement 
end, (3) overall movement end.) Bottom. Example of cursor position (black line, upper panel) and velocity (red line, lower panel) in a visuomotor 
isometric center-out task performed by a non-human primate. Note the periodic discontinuities highlighted in the velocity plot (black arrowheads). 
(Adapted from Hall et al. [134].)

1.6. The relation between maximum grip aperture and object size

When we reach for an object, it is most often to grasp it. Such reach-to-grasp action implies therefore dedicated 
processes also for the grasping phase. However, for what pertains the ‘macroscopic’ characteristics of reaching move-
ments, so far we focused solely on the kinematic invariants characterizing the so-called transportation phase. Even 
Fitts’ law, although factoring in the target size (i.e. the movement goal), considers only the duration of the reaching 
phase as its dependent variable (see equation (1) in section 1.1). Sensorimotor planning and control processes involved 
in reach-to-grasp actions should nevertheless take into account the distance of the object as well as its size and shape.
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Fig. 5. Grip aperture is preshaped during a reach-to-grasp movement. Upper panel. Grip aperture (red line) is superimposed to the hand 
tangential velocity profile (black line) of a reaching movement, and both variables are represented as a function of movement time (MT). Note 
the characteristic biphasic pattern: After a first opening phase in which the aperture gradually increases, the maximum finger aperture is reached 
(here, at ∼600 ms) and decreases afterward to fit the size of the target object. (Adapted from Jeannerod [164].) Lower panels. Photograms of an 
exemplary everyday reach-to-grasp movement, approximately corresponding to the timestamps displayed above (black dots and numbers).

In the early ’80s, the French neurophysiologist Marc Jeannerod began to describe goal-directed reach-to-grasp 
movements in humans and non-human primates. He observed how the grip begins to form during the transportation 
phase – a process known as hand preshaping – and describes a characteristic biphasic pattern: A first opening phase, 
in which the fingers straighten and the grip opens; And a second closing phase, in which the grip aperture decreases 
in anticipation to the contact with the object until its amplitude matches the target size (Fig. 5). Remarkably, the 
end of the opening phase – or, in other words, the time at which the maximum grip aperture is reached – occurs 
consistently after and strongly correlates with the time-to-peak of the hand tangential velocity (Jeannerod [163,164]; 
Paulignan et al. [245,244]; Becchio et al. [26]; see also Sartori et al. [287], in non-human primates; for different 
results see Paulignan et al. [246]). Importantly, as already mentioned in section 1.1, the size of the object significantly 
modulates the grip aperture from the very beginning (∼10%) of the transportation phase [22]. The amplitude of 
the maximum grip aperture covaries linearly with the object size, i.e. the larger the object the wider the aperture 
[211,308,165,281,282,88,22], although an interesting modulation related to the ultimate goal of the actions sequence 
– i.e. grasp-to-eat vs. grasp-to-place identical targets (e.g., see Flindall & Gonzalez [102]) – has been reported as well. 
Grip aperture is gradually modulated also by the object shape [286], especially whenever undesirable collisions with 
some of its parts have to be avoided: The higher this risk is, the greater will be the maximum grip aperture (Cuijpers 
et al. [72]; Verheij et al. [328,327]). Finally, this invariant kinematic attribute appears to hold robustly even when 
the involved sensorimotor processes are challenged by either low visual resolution (Holmes et al. [157]; Ganel et 
al. [112,111]; for a different interpretation cf. Utz et al. [324]) or illusory effects (e.g., the Ebbinghaus illusion; see 
Haffenden et al. [131]; cf. also Smeets & Brenner [301]), suggesting that both the planning and the control mechanisms 
underlying reach-to-grasp movements are poorly – if at all – affected by ambiguous contextual information (Danckert 
et al. [74]; for different conclusions cf. Glover & Dixon [122]).

1.7. Intentional effects: end-state comfort and grasp height

When reaching-to-grasp an object, the ultimate movement goal is hardly limited to the actual grasping itself. 
Indeed, we most often intend to use that object for a future purpose, whereby the grasping action represents only one 
of a more complex sequence of actions aiming at that same purpose. In such a scenario, the intentionality behind 
the entire motor sequence may set an important constraint for the selection of the appropriate movements, affecting 
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Fig. 6. The end-state comfort is an example of second-order grasp posture planning. A. Experimental setup used by Coelho et al. [63]. At the 
beginning of each trial (starting hand position, left), participants grasped a horizontal handle (black) fixed over a wheel (gray). After a 90◦ rotation 
(dashed red arrow), they were required to place the left (as in the case shown) or right end of the handle over a target (final hand position, right). 
The numbers indicate both start- and end-points (Adapted from Rosenbaum et al. [277].) B. Probability that the final hand position (as numbered 
above) for the task in A affects the choice to place the thumb toward the pointer in the starting hand position. The more extreme would have been 
the final hand position, the lowest was the probability. (Adapted from Rosenbaum et al. [277].)

the way in which a first-order motor command is planned in favor of a more comfortable, goal-specific second-order 
posture. Whereas the first accounts of this type of intentional effects were provided for movements different from 
grasping (e.g., see Marteniuk et al. [212]), they were then thoroughly reported for reach-to-grasp movements by the 
psychologist David Rosenbaum and his group in a series of works starting in the early ’90s. These experiments led to 
outline the well-known end-state comfort (Rosenbaum et al. [278]) and grasp height [64] phenomena (for reviews see 
Rosenbaum et al. [275,274,277]).

The end-state comfort effect consists in performing a grasping movement embedded in a motor sequence by engag-
ing in an effort which is greater than the one required by that same movement when performed in isolation (Fig. 6); 
Such an extra effort serves the purpose of ending the grasping with a hand posture that is most comfortable for per-
forming the next actions (Rosenbaum et al. [278]). A classic example is the one outlined hereafter: In front of a tray 
full of inverted glasses, a waiter may decide to grasp one of them with an awkward hand position – e.g., with his thumb 
pointing downward – with the purpose to lift it up, flip it, and therefore ending with his thumb pointing upward to 
comfortably fill it with a beverage; That is, he may choose to sacrifice the comfort of his first-order grasp planning by 
engaging initially in an effortful hand posture to accomplish the actual goal of the entire motor sequence in a comfort-
able, second-order planned posture of grasping [278,279]. The end-state comfort effect is learned during childhood, 
and some empirical findings indicate that it is fully developed only around the age of 9-10 years (Adalbjornsson et al. 
[6]; Weigelt & Schack [350]; Knudsen et al. [185]; Keen et al. [182]; Wunsch et al. [365]; Krajenbrink et al. [192]; for 
a review, see Wunsch et al. [366]), although other results point toward a far earlier development of simpler second-
order grasp planning processes (e.g., see Claxton et al. [62]). Noteworthy, the end-state comfort effect has been widely 
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Fig. 7. The grasp-height effect reflects the height at which we intend to move an object. A. Experimental setup used by Cohen & Rosenbaum 
[64]. Participants were asked to move a toilet plunger from a starting shelf to a target shelf (dashed red arrows), either higher (left) or lower (right). 
(Adapted from Rosenbaum et al. [277].) B. Relation between the height of the target shelf and the height at which participants grasped the toilet 
plunger in the experiment illustrated in A. The higher was the shelf to which the plunger had to be moved, the lower participants grasped its handle. 
(Adapted from Rosenbaum et al. [277].)

documented also in several species of non-human primates [353,59,236,104,376], which suggests how such a capacity 
may have been selected as advantageous during the evolution of primates in general (see Rosenbaum [273], chap. 2).

The grasp height effect is another example of second-order grasp planning, whereby an object is grasped at different 
points depending on the purpose intended for that same object, with the aim of preventing ending up the action chain 
with an extreme posture [64]. A common example is the following: Grasping for a toilet plunger on the floor to move 
it to a high placement – e.g., a shelf – implies grabbing the plunger lower on his handle; Conversely, when moving 
the same object from a high placement to a lower one, grabbing its handle higher is advantageous (the choice of this 
seemingly awkward example is not a random one: see Cohen & Rosenbaum [64]; Rosenbaum et al. [276]; Fig. 7).

The description of the invariant attributes which characterize the kinematics of biological motor behaviors allows 
us to point out two considerations:

• Kinematic invariants of biological motion span multiple hierarchical levels of complexity. Grasping an 
object implies not only the capacity to produce an optimally smooth, minimum-jerk movement [151,237,101]
with velocity scaling according to the accuracy requirements set by the object physical properties (relative posi-
tion, size) [364,94,95]. It involves also an anticipatory pre-shaping of grip aperture according to the object shape 
[163,164,245,246,244,286,26] and, more importantly, the ability to incorporate in the ongoing motor plan knowledge 
about the future intended use of that object [278,279,276,64]. Such a description retraces backwards the top-down 
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hierarchical organization of the sensorimotor planning and control processes: That is, from an action ultimate goal to 
the specification of low-level kinematic parameters. Notably, this hierarchical organization modulates all the invariant 
attributes of the kinematics of a goal-directed movement to match its final purpose, an observation that brings us to 
the following point.

• Kinematic invariants of biological motion are interdependent. Grasping a knife to cut something involves a 
motor plan that is completely different from the one required by grasping a glass to drink its content. Importantly, such 
differences are subtler than the most evident one involving the final purpose of each action sequence. Retracing both 
reach-to-grasp movements starting from their end, emerge different grip postures (i.e. thumb downward vs. thumb 
sideward), a different maximum grip aperture (smaller vs. larger; Marteniuk et al. [211]; Jeannerod [165]; Roy et 
al. [281,282]; Eloka & Franz [88]; Ansuini et al. [22]), a different tangential velocity profile (longer deceleration 
vs. shorter deceleration, independently from the path shape; Hogan [151]; Nelson [237]; Flash & Hogan [101]) and a 
different requirement in accuracy (higher vs. lower; Fitts & Peterson [95]), which in turn leads to a different movement 
duration (longer vs. shorter; Woodworth [364]; Fitts [94]). The same observations hold if we consider grasping a knife 
to either cut something or pass it to somebody. Each reach-to-grasp movement involves a different posture of both the 
upper limb in general (arm adducted vs. arm abducted) and the hand in particular (thumb leftward vs. thumb rightward, 
with respect to the knife handle; Rosenbaum et al. [278,279]), as well as – most likely – a different maximum grip 
aperture (smaller vs. larger, to avoid, for example, accidentally hitting its blade; Cuijpers et al. [72]; Verheij et al. 
[328]; Verheij & Smeets [327]). Furthermore, it entails a different tangential velocity profile (shorter deceleration vs. 
longer deceleration), a different accuracy requirement (lower vs. higher) and, therefore, a different movement duration 
(shorter vs. longer).

These observations show that the sensorimotor system actively modulates the invariant kinematic characteristics of 
movements for providing solutions – both adaptive and effective – to problems which are intrinsically placed by the 
processes of sensorimotor planning and control. In such a perspective, their invariant nature should be interpreted in a 
broader sense, especially when compared to other invariants that characterize the environment (e.g., gravity; we will 
return to this specific case in section 3.3).

Returning to what reported at the beginning of the present section, not only it is true that human beings can modify 
their kinematic invariants any time (Shadmehr & Wise [295], chap. 25), but they can also explicitly shape them for de-
livering meaningful information to observers [330], a phenomenon known as sensorimotor communication (Pezzulo 
et al. [249]; for a perspective article see Vesper & Sevdalis [329]; for a review see Pezzulo et al. [250]). In fact, such a 
richness of possibilities is provided by the redundancy [232,148] or abundance [203,202] of biomechanical degrees of 
freedom that intrinsically characterizes the skeletomotor system (Bernstein, 1967, cited in Bongaardt [43]). Further-
more, the phenomenon of motor equivalence results in a higher-order generalization of motor programs, which in turn 
allows to perform the same action regardless of small local changes that contribute to informational coupling with 
others (Lashley [201]; Raibert [261]; Wing [355]). A further source of such behavioral variability may be represented 
by the adoption of individual sensorimotor strategies (e.g., see Berret et al. [31], in reaching behaviors; Cesqui et al. 
[57,58], in interceptive behaviors; Maselli et al. [213], in throwing behaviors). These kinematic fingerprints [284], 
dynamic identity signatures (Hahn et al. [133], in gait) or perceptual-motor styles [332] characterize the way in which 
each different person moves, and may be a possible consequence of how the richness of biomechanical degrees of 
freedom is influenced by individual variations in anatomical proportions, distribution of masses between the body 
segments (Bernstein, 1967, cited in Bongaardt [43]; see also Runeson & Frykholm [284]) and even emotional states 
and/or personality traits (e.g., see the macroscopic gait differences during the triggering to maniac phases in bipolar 
patients, as described in Kang et al. [177]).

In sum, as we will discuss in the following section, the invariant kinematic attributes provide the observer with an 
extremely rich set of information.

2. Sensorimotor processes underlie the perception of biological motion

As we have outlined so far, biological motion features several regularities, i.e. invariants. In this section, we ask 
whether the brain could also use the same invariants during the recognition (as opposed to the execution) of biological 
motion.

First of all, it is instructive to start from the problem that the brain has to solve when observing – and trying to make 
sense of – actions executed by another person. It is widely recognized that people can potentially execute movements 
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with a richness of biomechanical degrees of freedom at their disposal (Bernstein, 1967, cited in Bongaardt [43]). 
While a lot of research asked whether the availability of several degrees of freedom is a problem or a bless for the 
person who executes the action (e.g., Latash [202]; see also Rosenbaum [273], chap. 4), here we are more concerned 
with the fact that it poses a non-negligible problem for anyone who is observing him/her in action (for a review see 
D’Ausilio et al. [73]). The intrinsic redundancy of the motor system is further exacerbated by the inter-individual 
variation in perceptual-motor styles [332], providing the observer of another person’s movement with an extremely 
challenging task [360]. And yet, such a task is performed effortlessly by human beings on a daily basis – how is this 
possible?

Starting from the early ’90s, a seminal series of discoveries carried out in both non-human primates (di Pellegrino et 
al. [80]; Gallese et al. [109]; Rizzolatti et al. [270]; Umiltà et al. [323]) and humans [91] brought to light the existence 
of the mirror-neuron system (for an opinion article see Rizzolatti et al. [271]; for reviews see Rizzolatti & Luppino 
[268]; Rizzolatti & Craighero [267]; Rizzolatti & Sinigaglia [269]), which contributes to action encoding through 
observation. By discharging during both the performance and the observation of either a specific movement (“strictly 
congruent” cells) or a broad class of movements (“broadly congruent” cells) [109], mirror neurons transform the visual 
information into an internal motor representation, the outcome of which, importantly, belongs to the observer’s motor 
repertoire [271,267]. Based on these findings, several works have later explored the possibility that action encoding 
may indeed rely on meaningful, though subtle, kinematic cues.

2.1. Decoding action intentions via intentional effects

Early behavioral works employed point light display (PLD) manipulations – a technique first introduced in 1973 by 
the Swedish psychophysicist Gunnar Johansson (Johansson [167]; see also Johansson [168]) – to investigate whether 
human observers are capable of gathering kinematic information to understand the intentions underlying whole-body 
movements. To this end, one classic attempt [284] relied on the so-called principle of kinematic specification of dy-
namics (KSD), according to which events causal factors are specified by movements (“[if] dynamic factor a influences 
the kinematic shape of movement M , [then] the kinematics of M specify a”; Runeson & Frykholm [284], pp. 596; 
see also Runeson & Frykholm [283]). It was shown that human observers are capable of distinguishing the actors’ de-
ceptive action goals by viewing only the actors’ body representation while they either lifted a heavy box or pretended 
to do so.

Most recently, a similar PLD paradigm has been used to investigate whether human observers are capable of ex-
tracting and decoding meaningful kinematic information to understand whether a reach-to-grasp movement towards 
a bottle is performed with the goal of either drinking or pouring its content [210]. Humans not only can infer the ulti-
mate purpose of a motor sequence from the observation of its kinematics: They appear to rely on the same kinematic 
attributes when both minimal (PLD) and full (non-PLD, i.e. natural stimuli) information is provided. In other words, 
the use of kinematic cues to decode the intention of an observed action may not be limited to (artificial) situations 
in which no other information is available but could actually play a role also in richer (natural) contexts. Several 
other studies exploited similar grasp-to-drink vs. grasp-to-pour (and grasp-to-place; Koul et al. [189]) manipulations 
in more natural (non-PLD) settings [55,191] or different joint-action paradigms [290] to shed further light on action 
decoding mechanisms (for perspective articles see Becchio et al. [25]; Ansuini et al. [20]; Sciutti et al. [289]; for a 
review see Ansuini et al. [19]). Altogether, these studies confirm the initial insight for a critical role of kinematic cues 
in inferring the actors’ intentions [290,55], and further show that reliance on kinematic information can be strong 
enough to override initial context-based expectations [191]. Yet, this capacity may be affected by individual sensori-
motor strategies (see Runeson & Frykholm [284]; Hahn et al. [133]; Vidal & Lacquaniti [332]), which may represent a 
sort of “kinematic threshold” allowing to discriminate between more and less predictable motor behaviors: Indeed, the 
actor’s motor style significantly affects intention decoding by the observer, with some individual kinematic attributes 
being consistently less predictable compared to others (e.g., see Koul et al. [189]).

The behavioral evidence is supported also by accumulating neurophysiological evidence [304,190,303,243]. In 
a fMRI study, Koul and colleagues [190] describe the activation of a bilaterally distributed frontoparietal network 
comprising the inferior (IPL) and superior (SPL) parietal lobules and the inferior (IFG) and middle (MFG) frontal 
gyri while participants observed reach-to-grasp movements to either drink or pour but found no significant difference 
between the two conditions. Patri and collaborators [243] targeted two of the same network nodes, i.e. the left anterior 
IPL and the left IFG, by perturbing their activity with continuous theta burst stimulation (cTBS) during observation 
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of the same type of (grasp-to-drink vs. grasp-to-pour) actions; they show that the left anterior IPL, but not the left IFG, 
is causally involved in the observer’ capacity to decode action intentions. Compelling evidence that kinematic cues 
trigger an implicit decoding of the ultimate goal of an observed action sequence comes from a study by Soriano et al. 
[303]. They exploited single-pulse TMS to probe the corticobulbar (CB) excitability for a muscle involved in mouth 
opening and deglutition – i.e. the mylohyoid – on participants observing again grasp-to-drink vs. grasp-to-pour actions 
and demonstrated anticipatory motor activation only in the former case, i.e. when the future scope of the action (to 
drink) involves the same muscle recruitment. Such a capacity to distinguish the intentions underlying, at least simple, 
movements by observing their kinematic features might be learned very early in life, as suggested by infants showing 
significant event-related desynchronization (ERD) of the sensorimotor mu rhythm (∼8-10 Hz, considered as a proxy 
of motor activation; see Hari et al. [135]; Muthukumaraswamy et al. [233]; for a review see Hari & Salmelin [136]) 
only during observation of actions whose final outcome / goal is non-ambiguous (Southgate et al. [304]; cf. also 
Geangu et al. [117]). Given that a movement, to activate a motor representation, should belong to the observer’s motor 
repertoire (Rizzolatti et al. [271]; Rizzolatti & Craighero [267]; see also Bonini et al. [44]), this latter finding may be 
in line with evidence showing a relatively early development of simple second-order grasp planning (e.g., cf. Claxton 
et al. [62]; see section 1.7).

2.2. Inferring a target object by observing the grip maximum aperture

A number of behavioral studies, employing either perceptual discrimination measures [50,12,21], eye-tracking 
[11], or a combination of both [280], have investigated whether human observers are capable of using kinematic cues 
for successfully predicting the object toward which a reach-to-grasp action is aimed to. Earlier works had already 
pointed out that the observers’ gaze proactively shifts toward the forthcoming position of an actor’s hand (e.g., see 
Flanagan & Johansson [98]) and that this anticipatory, task-specific eye shift closely matches the one performed by the 
actors themselves when they actually reach for, grasp and manipulate an object (e.g., see Land & Furneaux [199]; Land 
et al. [200]; Johansson et al. [169]; for reviews see Hayhoe & Ballard [141]; Land [198]). More recent works show 
that human observers can effectively predict both the size and the shape of an object toward which a reach-to-grasp 
action is performed, be the observed movements either fully visible [280,11,12], partially occluded [21] or even PLD-
manipulated [50]. Furthermore, the explicit perceptual judgments [50,12,21] and the implicit oculomotor behavior 
[11] appear to be highly correlated in time [280]. Notably, as the action gradually unfolds observers rely increasingly 
more on the kinematic cues related to the grip preshaping and discard potentially ambiguous information – e.g., the 
actor’s gaze orientation toward an object of different size compared to the target object [12]. Such a disentangling 
process is surprisingly fast, occurring soon after the beginning of the observed movement [280,11,12,50,21], similarly 
to what was already described for the discrimination of actions goals (see Santello & Soechting [286]; Holmes et 
al. [157]; Ansuini et al. [22]). This is particularly remarkable considering that the maximum grip aperture during the 
hand transportation phase is reached approximately when the bell-shaped velocity profile is at its peak [163,164,245,
246,244,26], i.e. roughly halfway with respect to the entire movement duration [229,302,1,156,101], or even later on 
(cf. Ansuini et al. [22]), suggesting that human beings are capable of using subtle kinematic information as soon as it 
begins to provide meaningful hints to understand the grasping goal.

The motor system is likely to be directly involved in such predictive processes. Elsner and collaborators [89]
delivered repetitive (r) TMS to either the hand or foot motor areas (M1) during the observation of a PLD reach-to-
grasp action toward an occluded object and found that only the former (i.e., effector congruent) significantly delayed 
the observers predictive gaze shifts. In a following fMRI work, subjects observed a similar reach-to-grasp movement 
and showed a significant involvement of frontoparietal areas and the dorsal visual stream – with foci located in the 
ventral premotor cortex (PMv), the postcentral sulcus (PoCS) and the anterior intraparietal sulcus (aIPS) – as long 
as the to-be-grasped object remained occluded. When the movement was displayed in full view (i.e. with the object 
completely visible), a strong involvement of the ventral visual stream (for reviews of the ventral and dorsal visual 
streams see Goodale & Milner [123]; Milner & Goodale [228]) was elicited [315]. As suggested also by the studies 
reviewed in section 2.1 (cf. Koul et al. [190]; Soriano et al. [303]; Patri et al. [243]), an effector-specific involvement 
of M1 [89] and a broader recruitment of a frontoparietal network and of the dorsal visual stream [315] to re-enact 
the observed actions seems to be crucial when the interpretation of others’ actions requires paying attention to their 
body kinematics (e.g., when the objects which represent the movements goals are occluded). The importance of such 
a re-enactment may nevertheless be context-dependent: When other reliable visuospatial information is available, it 
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may be complemented by the involvement of the ventral visual stream [123,228] to improve the overall accuracy of 
action understanding (Thioux & Keysers [315]; for an opinion article see Kilner [183]).

2.3. Discriminating biological from non-biological motion

To the best of our knowledge, no work has specifically investigated whether the minimum-jerk model is used 
by human observers to discriminate biological from non-biological motion. Nevertheless, several experiments have 
employed visual stimuli moving along straight or curved paths according to two kinematic invariants – the bell-shaped 
velocity profile and the two-thirds power law – that can both be inscribed within the minimum-jerk model (see Flash 
& Hogan [101]; Viviani & Flash [339]; Todorov & Jordan [319]; recall equation (5) in section 1.4). These studies are 
reviewed in the following:

• Recognizing a biological stimulus moving along straight and slightly curved paths. Behavioral works inves-
tigated whether human beings may have a dedicated internal model that allows them to discriminate a biologically 
compatible velocity from non-biological ones (Pozzo et al. [258]; Bouquet et al. [48]; Bisio et al. [38,35,37,36]; 
Gavazzi et al. [114]; cf. also Hayes et al. [140]). In an early work it was suggested that observers can rely on their 
motor competences to reconstruct the occluded part of a dot trajectory as long as its velocity is compatible with the 
kinematics of biological motion [258]. Motion capture techniques further revealed how both healthy people [48,38]
and neurological patients – in this particular case, suffering from Alzheimer’s disease (Bisio et al. [35]; cf. also Bisio 
et al. [36]) – show either motor contagion (for a review see Blakemore & Frith [42]) or automatic imitation (for a 
review see Heyes [144]) processes triggered by the observation of a biologically compatible kinematics and indepen-
dent of the specific visual context (e.g., moving dot vs. human model; see Bisio et al. [38]). These processes similarly 
hold also when the shape of the biologically moving artificial stimulus increases in complexity (e.g., humanoid robot; 
see Bisio et al. [37]). Interestingly, human observers are both more accurate as well as more precise in estimating the 
temporal properties (duration) of moving visual stimuli when their velocity matches a biological (bell-shaped) vs. a 
non-biological (constant) profile [114].

• When the path curvature is not slight at all. A number of behavioral works [337,336,343,344,341,76,176,
96,34,205,316] addressed the same hypothesis by means of trajectories occurring along a curved path. Early experi-
ments provided evidence that human beings are perceptually tuned to visual stimuli when their motion along elliptical 
paths obeys the two-thirds power law [343,341]. Such an attunement to biological stimuli causes strong perceptual – 
both visual [344] and kinesthetic [336] – illusions. On the one hand, the visual illusion results in the perception of 
the biological velocity as being uniform and, conversely, of the non-biological (constant) velocity as being strongly 
non-uniform [344], whereas it is actually the opposite case (Viviani & Terzuolo [345]; Abend et al. [1]; Lacquaniti et 
al. [197]; recall equations (2), (3) and (4) in section 1.3). Importantly, the involvement of smooth pursuit eye move-
ments in this robust illusion has been ruled out [76], therefore excluding a possible confounding role of concurrent 
oculomotor commands. On the other hand, the kinesthetic illusion causes a perceptual spatial stretching of motion 
trajectory along the direction of speed decrease [336]. More recent behavioral works further show how such a tuning 
to biological kinematics improves visual motion prediction [176,96,34] and is likely rooted in sensorimotor processes 
(see Levit-Binnun et al. [205]; Thoret et al. [316]).

Neurophysiological evidence further supports the notion that biological motion is encoded within specific / ded-
icated mechanisms grounded in the motor system [75,54,219,8]. A first fMRI study performed by Dayan and co-
workers [75] found significantly stronger activation of a large network of brain areas – including M1 and the superior 
temporal sulcus (STS) in the right hemisphere, PMv and IPL in the left hemisphere and the dorsal premotor cortex
(PMd) bilaterally – when viewing a cloud of dots moving according to the two-thirds power law compared to other 
non-biological types of motion [75]. Casile and colleagues [54] employed the same technique while participants ob-
served a human avatar displayed on a screen, moving either according to the two-thirds power law or not: Differently 
from the widespread network described in the previous experiment [75], a more focused activation pattern involving 
only regions in the left frontal lobe with a significant focus within PMd was found, suggesting that processing the 
information related to a biologically moving human shape might require the activation of a more restricted brain net-
work compared with that recruited by artificial stimuli moving in the same fashion. This hypothesis was corroborated 
by Agosta and collaborators [8], who employed single-pulse TMS to stimulate the representation of the right hand 
in the left M1 while subjects observed either a dot (cf. Dayan et al. [75]) or a human avatar (cf. Casile et al. [54]) 
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following a biological (two-thirds power law) or a non-biological (created by manipulating the exponent in equation 
(4), see section 1.3) motion trajectory. Interestingly, although both the dot and the human avatar biological motion 
significantly modulated the participants’ corticospinal (CS) excitability, such a modulation was tightly correlated 
with the stimulus instantaneous velocity only for the human-like stimulus. This might be in line with other neuro-
physiological evidence, which suggests that the distinguishing features of biological kinematics may be unnecessary 
to elicit an automatic motor activation during action observation as indexed by modulation of the CS excitability by 
means of single-pulse TMS [67]. Finally, in an EEG experiment, Meirovitch and co-workers [219] found a strong and 
widespread ERD of both alpha – localized in the central electrodes – and beta – involving also prefrontal electrodes – 
brain rhythmic activity when subjects observed PLD stimuli moving in compliance to the two-thirds power law, with 
respect to other, non-biological, types of motion (cf. Southgate et al. [304]).

An optimally-smooth, minimum-jerk kinematics (Hogan [151,153]; Nelson [237]; Flash & Hogan [101]; Gut-
freund et al. [130]; Sumbre et al. [309]; recall equation (5) in section 1.4) along straight as well as curved paths 
appears therefore to convey meaningful information that allows human beings to – at least implicitly – recognize 
it and discriminate it from non-biological ones [337,336,343,344,341,76,176,96,34,205,258,48,38,35,37,114,316]. In 
sum, people are capable of using these implicit cues to predict the spatial course of visual stimuli moving accord-
ing to biological motion [176,96,34,258], make an accurate and precise temporal estimation of their trajectory [114]
and also effectively imitate their kinematics [48,38,35,37]. Such capacities may be mediated by the involvement of 
a widespread frontoparietal network [75,54,219,8] and these kinematic hints are sufficiently strong to even induce 
perceptual distortions, on both the visual [344,76,205] and the kinesthetic [336,316] domain. Some works appear to 
suggest that such kinematic information may be meaningful enough to drive the observers’ behavior even when other 
visual cues might be largely more salient, i.e. when both the path of the observed movement and the shape of the 
end-effector are fully visible (e.g., see Bisio et al. [38]), in line with other results previously reported for both the 
intentional effects (cf. Manera et al. [210]) and the maximum grip aperture (cf. Ambrosini et al. [11,12]). Neverthe-
less, the possibility that kinematic cues are sufficient to override other information – even when it is seemingly more 
readily available – might be restricted to conditions in which the information density contained in the visual stimuli is 
limited, as other results also suggest (Flach et al. [96]; cf. Pozzo et al. [257]). It might be that the more we go down 
levels in the kinematic hierarchy, the more we enter a blurred zone whereby task-independent kinematic invariants of 
biological motion progressively lose importance to the eyes of human observers, as long as other reliable sources of 
information can be easily gathered.

Observers are certainly tuned to the invariants that characterize biological motion at a ‘macroscopic’ level, but 
are they capable of extracting relevant information also from the ‘microscopic’ structure of others’ movements? In-
triguingly, recent findings suggest that submovements can be consistently “read out” also in others’ movements and 
eventually exploited for fine interpersonal movement coordination [321].

2.4. Observing the grip preshaping might not be so strictly necessary after all

In principle, based on the speed-accuracy trade-off (Woodworth [364]; Elliot et al. [87,86]; Heitz [142]) and Fitts’ 
law (Fitts [94]; Fitts & Peterson [95]; Hoffmann [150]; recall equation (1) in section 1.1), an observer should still 
be capable to infer the size of the to-be-grasped object even when observation of the fingers preshaping is impeded. 
Indeed, a behavioral work [215] examined eyes movements while participants executed and (separately) observed the 
same type of movements (based on Fitts’ law) and found that fixations, despite being different in number, showed 
comparable duration in the two conditions. Furthermore, activation of cortical (M1 and supplementary motor area –
SMA) and subcortical (basal ganglia) motor regions during observation of a similar Fitts’ task scales with the difficulty 
– i.e. the ID (see Fitts & Peterson [95]) – of the task [90].

In light of the evidence reviewed so far, we can now draw four considerations:

• The kinematic invariants of human motor behavior can be proactively shaped by actors. Especially when 
involved in a social context, human beings may deliberately choose to vary the invariant attributes of their movements 
at any time (Shadmehr & Wise [295], chap. 25). To this end, they can exploit the many degrees of freedom afforded by 
their skeletomotor system (Bernstein, 1967, cited in Bongaardt [43]) to effectively shape the redundancy / abundance 
[232,203,202,148] and the equivalence (Lashley [201]; Raibert [261]; Wing [355]) intrinsic to their motor behaviors, 
with the specific purpose of making their actions goal more transparent (see Pezzulo et al. [249]) even in spite of other 
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available irrelevant or misleading cues (see D’Ausilio et al. [73]). Such a sensorimotor communication (Pezzulo et al. 
[249,250]; Vesper et al. [330]) strongly depends on the “malleability” of human kinematic invariants, a characteristic 
that cannot be found in any other environmental invariant attribute (e.g., cf. Sun & Perona [310]; Mamassian & 
Goutcher [209]; Girshick et al. [121]; Jörges & López-Moliner [173,174]; see section 3.2 and 3.3).

• The observer’s individual motor signature(s) tune(s) action recognition. Besides the specific intention / strat-
egy of conveying sensorimotor (communicative) signals, every person moves according to his or her own kinematic 
fingerprints / dynamic identity signatures / perceptual-motor styles [284,133,332], which may be successfully en-
coded – be the person already known or not – by the observer(s) to recognize who is performing the action (Hill & 
Pollick. [146]; Troje et al. [322]; Sevdalis & Keller [294]; for a review see Yovel & O’Toole [367]). Furthermore, 
previous knowledge of the actor’s personal sensorimotor style may sometimes even be crucial to correctly interpret 
the observed action. According to neurophysiological evidence, this may lead to an increasing modulation of the CS 
excitability during the observation of sensorimotor strategies which remarkably differ from one’s own [147].

• The strong prior knowledge deriving from expertise plays a crucial role in actions encoding. Whereas 
the kinematics of everyday movements – e.g., a reach-to-grasp – can deliver meaningful information to any healthy 
human being (e.g., see Soriano et al. [303], for an eloquent account), the same point does not hold anymore when a 
less common, highly skilled action – e.g., an athletic gesture – is observed: In this case, the role of expertise – i.e. the 
repeated exposure to both the performance and the observation of a specific set of motor acts – plays a fundamental 
role in making predictions of the movement outcome [3,4,300,2,7,334,160,230,331]; Motor training especially seems 
to be critically involved (e.g., see Casile & Giese [53]; Beets et al. [29]), in line with the importance of the observers’ 
motor repertoire in understanding actions [271,267].

Studies in the field of sport sciences have investigated to which extent expert players are better than either amateurs 
or novices in extracting, especially under time pressure, information concerning the intention of an opponent by 
observing his/her movement kinematics (for a review see Müller & Abernethy [230]). For example, experiments with 
squash [3], tennis [300,160], badminton [2,4] and handball [334] players pointed out how expertise in a specific 
discipline facilitates the prediction of the direction [3,300,2], the depth [3,4], and the type of stroke [300,160] that is 
about to be executed by the opponent. Such an improvement (due to expertise) remains intact when visual information 
is impoverished by using PLD-manipulated stimuli instead of videos [3,4,300,2,230], although the two types of stimuli 
may prompt different strategies (e.g., cf. Vignais et al. [334]).

Besides conferring finer granularity to the representation of others’ actions, motor expertise may also optimize the 
prediction of future kinematic cues. For instance, Aglioti and colleagues [7] applied single-pulse TMS on the right 
hand representation in the left M1 of both basketball experts and novice subjects while they observed the execution 
of free shots (a motor behavior which, in a broad sense, is comparable to a Fitts’ task). Results showed that elite 
basketball athletes can predict the success of the free shots earlier – even before the ball leaves the player’s hands – 
and more accurately than both other experts and novices, and they display a time-specific motor activation during the 
observation of erroneous throws (see also Vicario et al. [331]). These findings suggest that motor expertise translates 
into corresponding expertise in encoding others’ kinematics by providing with kinematic priors, which are finer-
grained and have a longer temporal horizon.

• Contextual environmental information may be decisive in encoding ambiguous kinematics. Although in-
formative in many situations, kinematic cues may sometimes be insufficient or ambiguous (e.g., see Flach et al. [96]; 
Thioux & Keysers [315]). In these cases, contextual information becomes decisive in complementing kinematic in-
formation. Parallel to several findings outlining either a complementary (e.g., see Almeida et al. [10]; Kalénine & 
Buxbaum [175]; cf. also Vankov & Kokinov [326]) or interferent (e.g., see Borghi et al. [45]; Randerath et al. [262]) 
role of contextual information in sensorimotor planning and control processes (Watson & Buxbaum [349]; for a re-
view see van Elk et al. [325]), recent results point out the importance that such information plays also in understanding 
others’ actions (see Anelli et al. [17]; Amoruso & Urgesi [13]; Amoruso et al. [14,15]; cf. also Amoruso et al. [16]).

In summary, while observing the movements of conspecifics, human beings rely on at least two sources of infor-
mation. On the one hand, the invariant kinematic attributes which characterize both the actor’s and the observer’s 
motor repertoire – thoroughly described in the previous section – are progressively gathered as the observed actions 
unfold. Given the interdependency of such kinematic invariants, they likely provide with a continuous bottom-up flow 
of (visual) information which evolves and accumulates over time. On the other hand, contextual information inherent 
to the physical and social environment in which the actions are taking place allows the observer to make top-down 
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predictions concerning the actor’s goal(s). Such top-down beliefs (intended in a Bayesian sense, see section 3.2) on 
what goal-directed behaviors are more likely to take place within a given environmental context are complemented 
by and integrated with the strong prior knowledge of the invariants characterizing human kinematics, derived by the 
lifelong experience with both performed and observed movements.

These processes – bottom-up evidence accumulation and top-down prediction – unfold online and in parallel, and 
their interplay eventually provides with the most likely interpretation of the observed action. How such an integration 
is actually performed likely depends on how reliable the available sources of information are weighted. On the one 
hand, the invariant kinematic attributes may be abundant and eloquent enough either because the movement is over-
trained (e.g., see Manera et al. [210]; Scorolli et al. [290]; Cavallo et al. [55]; Koul et al. [191]) or because the actor 
proactively shapes his/her own kinematics to facilitate the observer in an interactive context [249,250,329]. In such a 
scenario, the observer might rapidly and successfully match the accumulating bottom-up visual information with the 
top-down kinematic priors, and this match could be so compelling to even override other ambiguous or incongruent 
contextual information (e.g., see Ambrosini et al. [12]; Koul et al. [191]). On the other hand, the actor’s movement 
may not provide with sufficiently reliable information, for instance when it does not belong to the observer’s motor 
repertoire [3,4,300,2,7,334,160,230,331], when the sensorimotor strategy adopted by the actor is poorly predictable 
(e.g., see Koul et al. [189]) or, more simply, when visual information is poor [67], insufficient [239] or ambiguous 
[96,315]. In this case, top-down contextual priors could effectively take over the inferential process and make up for 
the limited kinematic information [17,13–15].

3. Internal models across motor control and action observation

So far, we have reviewed a large body of evidence indicating the prominence of kinematic invariants in motor 
control. Furthermore, we discussed how the same kinematic invariants can be exploited during the recognition of the 
actions performed by others. This raises the question of how exactly the brain reuses invariants across motor execution 
and action observation. Here, we argue that this is possible because the brain forms internal models for motor control 
and exploits them during action observation and, more broadly, action simulation. We firstly discuss the notion of 
internal models and then suggest the speculative hypothesis that it is precisely the existence of kinematic invariants 
that licenses (and perhaps directly triggers) the use of internal models for motor control during action observation 
tasks.

“If the organism carries a ‘small-scale model’ of external reality and of its own possible actions within its head, it 
is able to try out various alternatives, conclude which is the best of them, react to future situations before they arise, 
utilise the knowledge of past events in dealing with the present and future, and in every way to react in a much fuller, 
safer, and more competent manner to the emergencies which face it.”. These lines, written in 1943 by the Scottish 
philosopher and psychologist Kenneth Craik [68, p. 61] in his essay “The Nature of Explanation”, represent perhaps 
the first explicit postulate for the existence of internal models of the world, as well as for their biological role. Although 
his tragic and premature departure two years later prevented Craik to develop these insights further, his assumptions 
have been widely supported and expanded in the neuroscientific research starting from the second half of the ’80s up 
to the present time.

3.1. Forward internal models and motor prediction

The neuroscientific investigation of internal models first emerged consistently in the literature concerning com-
putational motor control, which uses approaches derived from engineering and, more specifically, the mathematical 
framework provided by optimal control theory (for a review see Todorov [318]), to address how movements are 
planned and performed.

In general, internal models are theoretical constructs that are supposed to mimic the behavior of a natural process 
[361,223,357]. From the perspective of computational motor control, internal models are representations generated 
by the nervous system, used to account for the properties of the motor apparatus (e.g., limbs lengths and masses, joint 
angles) and the environment (e.g., objects features) (Mussa-Ivaldi [231]; Bizzi et al. [41]; Grush [127,128]; Wolpert et 
al. [359]). Such representations encode the sensorimotor transformations that, starting from these properties, generate 
the motor commands required to perform a desired movement [235,23,195,307]. As already outlined in several reviews 
(e.g., see Miall & Wolpert [223]; Wolpert et al. [362]; Mussa-Ivaldi [231]; Wolpert & Ghahramani [356]; Grush [127]), 
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a first relevant distinction is that between inverse and forward models. Being the former inherently concerned with the 
control side of motor performance (see Neilson et al. [235]; Shadmehr & Mussa-Ivaldi [296]; Imamizu et al. [161]; 
for a review, see Atkeson [23]), they will not be described further in the present work. Conversely, the latter deal with 
the prediction part of motor control [99] and, therefore, are particularly relevant to the topic at hand.

Forward models – also termed ‘predictors’ (e.g., see Wolpert & Ghahramani [356]) or ‘emulators’ (e.g., see Grush 
[127]) – encode the causal relationship occurring between actions and their outcomes [357,231,119,307], allowing 
to predict the future state of the motor system and the environment [171,172,195,362,356,127] in terms of expected 
sensory consequences of actions [99,66]. To do so, a forward model receives as input an efference (or efferent) copy
[347,92,139,359] of the outgoing motor command, a concept which was first theorized in 1867 by the German scientist 
Hermann L. F. von Helmholtz (1867, cited in Gielen [120]), and generates an internal sensory signal, or corollary 
discharge (Sperry [306]; Bell et al. [30]; for a review, see Matthews [214]) as output [223,252].

In light of this, it has been proposed that using forward models could be advantageous for sensorimotor control 
in at least five ways [361,298]. First, forward model could support the anticipation and suppression of the sensory 
effects of a movement, or reafferences. This allows minimizing the neural responses to predicted sensory features, 
therefore permitting to enhance more relevant information [30,223,356]. Second, forward models could support the 
prediction of action outcomes before any actual feedback becomes available. This would permit overcoming the 
intrinsic noise and delays in sensorimotor loops, which often make feedback-based motor control inaccurate and/or 
too slow [362,231,356,119,307,66]. Third, “chaining” multiple predictions generated by the forward model while 
external stimuli and motor outputs are suppressed affords a form of mental simulation of future outcomes, which 
could be useful for goal-directed planning and imagination [356,127]. Fourth, forward models could support the 
transformation of errors between predicted and actual outcomes in the sensory domain into corresponding prediction 
errors in the motor domain, hence providing for appropriate motor learning signals [171,172,223,362,357,99,307,66]. 
Fifth, forward models can support state estimation, by combining the next state prediction with reafferent sensory 
corrections for accurate motor control [362,357].

Besides the sensorimotor domain, forward models can be generalized to several cognitive domains depending on 
the behaviors that are represented, by embedding knowledge of a given environmental property in order to predict 
future states of the external world [223,362]. These estimates provide a framework for interpreting sensory inputs, 
allow for anticipating and minimizing processing conflicts and are subject to modification on the basis of sensory 
information [127,66,252]. Therefore, forward models embed features of natural processes which may involve either 
the body, the environment or their mutual interactions [359].

3.2. Bayesian interpretations of the idea of internal models

The large body of work on internal models reviewed so far sits well within a broader perspective of the brain as an 
inferential machine, known as the Bayesian brain hypothesis (Friston et al. [108]; Kappel et al. [178]; for opinion and 
perspective articles see Knill & Pouget [184]; Clark [60]; Meyniel et al. [221]; for reviews see Friston [107]; Pouget 
et al. [256]; for further readings see Rao et al. [263]; Doya et al. [84]; McNamee & Wolpert [218]). The basis of this 
interpretation relies on a theorem that was proposed in 1761 by the English mathematician Thomas Bayes and which, 
given two random variables x, a model variable (our hypothesis), and y, an observed variable (our data), that are not 
statistically independent from each other, derives the relation between their respective distributions / densities (for 
discrete / continuous variables, respectively) with the following equation:

p(x | y) = p(y | x) p(x)

p(y)
(6)

where p(x | y) = posterior probability (of the model variable x after an observation of the variable y), p(y | x) =
generative model or likelihood (of an observation of the variable y, assuming that the hypothesis x is correct), p(x) =
prior probability (of the model variable x, independently of any observation of the variable y), and p(y) = marginal 
probability (of making an observation of the variable y, used as a normalization factor). In words, equation (6) for-
malizes how the belief of a certain hypothesis should be updated according to how accurately that same hypothesis 
predicted the observed data (for further readings see Doya & Ishii. [83]; Shadmehr & Mussa-Ivaldi [297], chap. 5).

By applying such statistical framework in neuroscience, the Bayesian brain hypothesis suggests that neural circuits 
encode and compute probabilities to represent and process sensory information [113,186,221]. Because environmen-
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tal events occur simultaneously in a seemingly chaotical way and their observation – if not wrong [27] – is noisy and 
often ambiguous [93], this probabilistic inferential processing must rely on prior knowledge about event occurrence 
[206,260]. Such priors are derived by encoding the statistics of the environmental properties [121,155] and undergo 
a continuous experience-based reshaping during the life of an individual [260]. These updating mechanisms are pos-
sible by comparing the internal forward representation of the posterior probability distribution of an event with the 
actually observed environmental distribution of that same event [121]. Therefore, the Bayesian interpretation provides 
a useful mathematical framework within which formalizing the notion of ‘prediction error’, which is computed by 
the sensorimotor system and used to refine forward models [356,298,359]. Such probabilistic inferences ultimately 
allow animals to perform decision-making processes in – approximately (see Acerbi et al. [5]) – Bayes-optimal ways 
[187,188,206,107,358,260].

One recent evolution of the Bayesian brain hypothesis is the active inference framework, which assumes that both 
perception and action processes in the brain can be described in terms of an approximation to Bayesian inference: 
the minimization of (variational) free energy [105,251,247]. At difference with the theories of motor control reviewed 
above, active inference assumes that the brain only needs forward models, but dispenses with inverse models – or 
better, it only uses a much simpler kind of inverse model compared to what assumed by classical theories of motor 
control (for a side-by-side comparison of the notions of internal models in active inference and optimal control theory 
see Friston [106]).

Despite their differences, all the formal accounts of motor control based on some form of Bayesian inference 
would assume that the brain encodes statistical regularities and invariants in its internal models – perhaps as priors 
that reflect the “natural statistics” of visual or auditory scenes, or sensorimotor contingencies – and uses them during 
perceptual processes, such as action prediction and recognition. In keeping, several works have successfully modeled 
sensory [209,121], decision-making [186,110,204] as well as motor [187,188,359] processes in humans according to 
a Bayesian perspective. Similar findings supporting (near-)optimal behaviors in non-human primates [333] and other 
animals (e.g., see Rich et al. [264]) have been provided as well, extending the Bayesian tenets to a broader biological 
context [221]. As it might be expected, a very consistent environmental attribute encoded by the prior will result in a 
smaller error between the predicted posterior probability and the actual observation of the event and, as a consequence, 
will determine a closer to optimal behavior: This is, for example, the case of priors concerning the source of (natural) 
illumination (assumed to come from above; see Sun & Perona [310]; Mamassian & Goutcher [209]), as well as the 
cardinal orientation of a visual scene [121].

Therefore, it should be expected that a robust invariant characterizing the environment could represent a benchmark 
paradigm to test the reliability of an internal model. Indeed, an environmental attribute which is highly consistent in 
its strength and ubiquity would likely lead to a near-null prediction error, i.e. to a negligible difference between 
the estimated posterior probability and its current observation. A conspicuous amount of empirical data indicates 
that, among all the existing environmental invariants, gravitational acceleration best exemplifies the case of internal 
models, which lead to Bayes-optimal behaviors. Hence, below we discuss empirical evidence that the brain internal 
models might encode gravity, as a compelling example of the fact that they might encode statistical invariants at large.

3.3. Gravity is encoded in a robust forward model

The reason why developing a forward model of gravitational acceleration would be advantageous is at least twofold. 
On the one hand, human beings perform generally poor in the visual discrimination of accelerations, especially during 
short viewing periods (e.g., see Brouwer et al. [49]; for a review see Zago et al. [375]). The sensorimotor delays that 
– as already mentioned – inherently affect the inverse models [235,161] must therefore be compensated somehow. On 
the other hand, by acting on the body mass, gravitational acceleration produces a non-negligible inertia of the effectors 
[354]. When planning a movement – even a simple one, such as a reaching with the upper limb – this effect has to 
be anticipated. Starting from the early 2000’s, a large set of works has provided evidence in support of an internal 
model of gravity. Because most of this work has been already extensively discussed in several reviews (e.g., see Zago 
& Lacquaniti [368,370]; Zago et al. [375]; Bosco et al. [47]; White et al. [354]), what follows will be just a brief 
summary of the main evidence in this respect.

Empirical findings suggest that, when intercepting an object falling along the vertical axis, predictive temporal 
estimates reflect an integration between visual cues about its motion and prior knowledge of the gravitational effects 
[375]. The strongest evidence supporting this view comes from experiments performed in the absence of gravity: 
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During space – or parabolic (training) – flights, astronauts intercepting falling objects perform overly anticipatory 
movements, which are subsequently interrupted or inverted in direction (McIntyre et al. [217]; Senot et al. [293]; for 
a review see McIntyre et al. [216]). In such a unique condition, it seems therefore that fast, feedforward-planned, 
interceptions undergo an important feedback-based error-correcting phase as soon as the violation of the expected 
gravitational effects is detected. In addition, the kinematics of the upper limb shows adjustments consistent with the 
hypothesis that the sensorimotor system takes into account the action that gravity exerts on the motor effectors [241,
354]. Experiments on Earth, performed on both human beings and non-human primates, shed further light on this latter 
phenomenon and suggest the existence of an effort-optimization strategy which relies on effective motor plans (i.e. that 
take into account the gravitational effects) to minimize muscles effort (e.g., see Poirier et al. [254]; Gaveau et al. [115]). 
Other studies have further disentangled the anticipatory processes involved in the interceptive behaviors by addressing 
the time-to-contact estimation and interception of falling objects in both vertical [371,292] and projectile [46,78]
motions or for objects rolling down an inclined plane (La Scaleia et al. [193]; Mijatović et al. [227]), and extended the 
investigation to other more complex interceptive actions, such as batting movements (e.g., see Katsumata & Russell 
[179]) and object manipulation (e.g., see Toma et al. [320]). Overall, these results show that interceptive performance 
is largely more accurate and precise for ‘naturally’ falling objects compared to experimentally manipulated velocity 
profiles violating gravity (e.g., inverted or doubled gravitational acceleration, constant velocity, etc.; see Zago et al. 
[373]; Bosco et al. [46]). In general, the pattern of errors indicates a predominance of predictive mechanisms consistent 
with spatial and temporal estimates relying on the expectation of the gravitational effects [47,194].

Rather than reflecting an accurate internalization of the Newtonian principles of gravity, these predictions likely 
represent a naïve, i.e. only approximately correct, heuristic of the physical laws (Ceccarelli et al. [56]; for a review 
see Hubbard [159]). Nevertheless, the encoding of this robust environmental invariant starts early in life and gives 
rise to a highly reliable internal model allowing for an immediate perception of its violations [305]. Once learned, the 
extreme robustness and ubiquity of this invariant would only afford, if anything, a negligible experience-based tuning 
of the corresponding internal model – a noteworthy difference from the error-correcting process which continuously 
reshapes other priors during the life of an individual (e.g., as elucidated by the size-weight illusion affecting object 
manipulation; see Flanagan & Beltzner [97]). Since prediction errors would therefore result almost entirely from 
environmental and/or sensorimotor noise, unexpected violations of gravitational effects can be detected unusually 
fast and, by the same token, might be rather challenging to compensate for [217,354], leading to an adaptation of 
the preexistent model itself rather than to the creation of another internal representation ex novo (Zago et al. [371,
372]; Zago & Lacquaniti [369]; Bosco et al. [46]; Hubbard [159]). Altogether, these findings indicate that gravity is 
internalized as a particularly robust Bayesian prior (MacNeilage et al. [208]; Alberts et al. [9]; Jörges & López-Moliner 
[173,174]; see also Shadmehr & Mussa-Ivaldi [297], chap. 5) with clear consequences on sensorimotor behavior.

3.4. Summary and speculative proposal

In this section, we discussed the widespread idea that the brain might learn and use internal models for perception 
and motor control (and more broadly, for several facets of cognitive processing) and then we reviewed empirical 
evidence suggesting that internal models could encode robust environmental invariants, such as gravity. Clearly, if the 
main role of generative models is learning about (and simulating or emulating) statistical regularities, their contribution 
should not be restricted to gravity, but also to other invariants that we encounter (or produce) constantly – including 
the kinematic invariants that have been the focus of this article. Interestingly, if we assume that internal models for 
movement control encode kinematic invariants and that they can be reused for action perception (and imagination), 
then the consequence is that our internal models should make us exquisitely sensitive to perceiving the same kinematic 
invariants that we use during movement. Crucially, because kinematic invariants are (by definition) the most stable 
traits of our movements, they should be also the most stable information that we are able to perceive and decode 
during action observation.

This leads to the speculative proposal that the main contribution of the motor system (and of its internal models) 
to action observation is to process kinematic invariants, as these are the most salient and stable characteristics of 
observed movements. If this hypothesis is correct, then the presence (or the expectation) of kinematic invariants 
could be sufficient – and perhaps necessary – to engage internal models for the control of movement during action 
observation; whereas the same models would not be engaged (or engaged to a significantly lower extent) during the 
processing of perceptual streams that lack kinematic invariants. While this is clearly a speculative proposal, it could 
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help conceptualizing the large body of evidence described in this paper about the importance of motor invariants 
during action observation.

Potentially, the models capacity to process kinematic invariants could serve multiple roles, such as inferring / 
predicting biological movements and their underlying intentions (action prediction and intention recognition), guiding 
attention towards the kinematic features of movement that are expected to be more informative (hypothesis testing) 
and finessing one’s movements to be more informative for co-actors (sensorimotor communication). All these (and 
other) capabilities have been linked to the functioning of internal models in a way or another. Future research is needed 
to establish whether it is specifically the capability to process motor invariants that renders internal models so useful.

Finally, if the above hypotheses are correct, it could be possible to reconsider neurophysiological evidence of 
motor activation during action observation as the brain’s inference of kinematic invariants of movement and the 
subsequent exploitation of these invariants to infer the actions and intentions of our conspecifics, as well as forming 
social (cooperative and competitive) plans. The rationale of this idea is that while non-motor systems (e.g., the visual 
system) can robustly learn and process information about the statistics of movements, the motor system is especially 
well suited to pick up kinematic invariants – as it is already tuned to such invariants for the sake of motor control. 
Testing this idea would require systematically varying the amount (and reliability) of kinematic and other invariants 
during movement perception and testing whether the motor system plays a privileged role (or perhaps a causal role, 
by using inactivations) when motor invariants are key.

4. Conclusions

The present review piece was aimed at presenting, within a unified framework and in a single place, an extensive 
description of all human motor invariants so far consolidated in literature. That of invariants in motor behavior is 
certainly an old-fashioned concept that is substantiated by plenty of evidences, which however are often overlooked 
in recent studies that either rediscover old results or worse, collide with basic knowledge about how movement is 
generated, organized and planned. A better understanding of motor invariants also offers a robust theoretical and 
empirical ground for the investigation of higher-order phenomena such as interpersonal coordination, sensorimotor 
communication, action perception or intention decoding. In fact, motor invariants are a set of measurable objective 
properties of movement, most often the only true observable in behavior. Invariants are indeed the only thing we can 
use to reverse engineer the properties and functions of internal models which is instead a purely speculative construct. 
Interestingly, motor invariants are not only measurable by experimenters in their lab but can actually be read and used 
by conspecifics during real life. Here, transitioning from an empirical to a theoretical ground, movement invariants 
(and variations upon them) constitute the only shared informational medium between animals, given that language 
is a relatively recent acquisition in evolution. This basic fact alone should lead to acknowledge this framework as 
the only meaningful one when approaching the investigation of social interaction. Rather, social interaction is often 
investigated as if human beings, i.e. “special” animals, had developed highly sophisticated cognitive abilities by losing 
such a primitive sensorimotor communicative function in favor of abstract or symbolic thinking. Well, we should not 
be so optimistic about us being so different from animals.

Nevertheless, it should be straightforward to accept that, given the existence of motor invariants, any Darwinian 
agent should be sensitive to these regularities in conspecifics’ behavior. In fact, motor invariants not only save us time 
and resources when making top-down directed inferences but actually contribute to make up a social saliency map 
whereby certain spatiotemporal spots are destined to attract our best efforts. Biological motion invariants (i.e. Fitts’ 
law, bell-shaped velocity profile or the 2/3 power law) isolate “humans” (or animals) from the background. Maximal 
finger aperture or the end state comfort, willingly or not, project human intentions outside their own body right before 
they are needed to our conspecifics to read and exploit them appropriately. Finally, it is worth mentioning that all of 
these features are visual in nature but are inherently constrained by biomechanical and neuromotor principles. Consid-
ering that such principles are intrinsically present in action planning and execution, our claim is that the internalized 
knowledge of how inertia, gravity, the viscoelastic properties of muscles or how the force-contraction coupling for 
muscle recruitment (and so on) works, constitutes the most basic set of Bayesian priors available in support of oth-
ers’ actions classification and prediction. When motor neurophysiologists discuss motor theories of perception, they 
should have this in mind, certainly not the demonstration that BA4 or BA6 is active in an fMRI action observation 
study. The motor system is far more than that, and we should not forget that Nature has solved these biomechanical 
problems since we crawled out of water; For millions of years, expressing motor invariants – and being able to read 
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them in others – probably made the difference in terms of survival, mating and feeding opportunities within a species 
hallmarked by its social life. To make sense of this, we advanced the speculative hypothesis that the main contribu-
tion of the motor system – and its internal models – during action observation could be processing stable kinematic 
invariants. This hypothesis, which remains to be tested in future studies, points towards the centrality of kinematic 
invariants not just for action generation, but also to engage the brain internal models in sophisticated social cognition.
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