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Abstract
Classification of large data sets by feedforward neural networks is investigated. To deal with unmanageably large sets of
classification tasks, a probabilistic model of their relevance is considered. Optimization of networks computing randomly
chosen classifiers is studied in terms of correlations of classifiers with network input–output functions. Effects of increasing
sizes of sets of data to be classified are analyzed using geometrical properties of high-dimensional spaces. Their consequences
on concentrations of values of sufficiently smooth functions of random variables around their mean values are applied. It is
shown that the critical factor for suitability of a class of networks for computing randomly chosen classifiers is the maximum
of sizes of the mean values of their correlations with network input–output functions. To include cases in which function
values are not independent, the method of bounded differences is exploited.
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1 Introduction

In practical applications, feedforward networks compute
functions on finite domains (formed, e.g., by pixels of pic-
tures or scattered vectors of features), which are typically
large and high-dimensional. Computational difficulties of
multidimensional tasks, called the curse of dimensionality
(Bellman 1957), have long been well known. In particu-
lar, the numbers of parameters needed for computation of
certain types of tasks grow exponentially with increasing
dimension. However, it was observed that proper choices
of a type of network computational units and/or network
architecture can considerably reduce this number, sometimes
even from an exponential dependence to merely a linear one
(see, e.g., Barron 1993; Gnecco and Sanguineti 2008, 2011;
Kainen et al. 2003, 2012; Mhaskar 2004 and the references
therein). Experimental evidencewas in somecases confirmed
by mathematical arguments, e.g., Gaussian SVM vs. shallow
perceptron networks (see, e.g., Bengio et al. 2006; Kůrková
and Sanguineti 2016).

Even for domains of moderate sizes, sets of all classifi-
cation and uncorrelated regression tasks are unmanageably
large—they grow exponentially with increasing sizes of
domains. However in real applications, most of these func-
tions are not likely to represent any task of interest. In
Kůrková and Sanguineti (2017), we introduced a proba-
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bilistic approach to model prior knowledge that a function
represents a taskswhich can occur in a given application area.
In Kůrková and Sanguineti (2019), we derived probabilistic
estimates of model complexities of shallow networks com-
puting functions randomly chosen from uniform and product
probabilities.

In solvinghigh-dimensional problems, the curse of dimen-
sionality is complemented by the blessing of dimensionality,
which includes concentration of values of random variables
around theirmeanvalues andpossibilities of reductionof data
dimensionality by random projections (see, e.g., Dubhashi
and Panconesi 2009; Gallicchio and Scardapane 2020; Gor-
ban et al. 2016, 2019; Matoušek 2002). Most concentration
inequalities hold for sums of independent random variables.
Such estimates are applicable to cases satisfying the naive
Bayes assumption, e.g., when the presence of a particular
feature or symptom in a class is unrelated to the presence
of any other feature. Results based on this assumption work
quite well for data withmany equally important features. The
naive Bayes assumption has been successfully used in text
categorization since 1960s.However inmany other real prob-
lems, the independence of labels assigned to feature vectors
cannot be guaranteed.

We investigate capabilities of efficient approximation of
randomly chosen functions by neural networks. We explore
approximation errors measured in the l2-norm in terms of
correlations of random classifiers with input–output map-
pings implementable by classes of feedforward networks.
We propose a probabilistic model of relevance of computa-
tional tasks including distributions that may not satisfy the
naive Bayes assumption (i.e., when classes are not assigned
to network inputs independently). Allowing violation of the
independence hypothesis strongly limits possibilities of the-
oretical analysis of such tasks. Indeed, most mathematical
tools based on the concentration of measure phenomenon
assume independence of random variables or even uniform
probability. Concentration-type results holding without the
assumption of independence of variables are rare and hold
only for functions which do not “vary toomuch.”We explore
possibilities of applying concentration inequalities based
on Azuma–Hoeffding theorems to correlations of randomly
chosen classifiers with network input–output functions. We
apply the method of bounded differences to cases when cor-
relations satisfy a coordinate-wise Lipschitz condition with
sufficiently small parameters. To deal with more general
probabilities, we apply an average Lipschitz condition. We
exploit these conditions to estimate correlations of input–
output functions with random classifiers chosen according
probability distributions, where conditional mean values do
not “vary too much.”

We show that on large domains, correlations of randomly
chosen classifiers with any fixed binary-valued function are
concentrated around their mean value. Thus, approximation

errors of randomly chosen functions according to suitable
distributions behave almost deterministically. Suitability of
a given class of networks for approximation of relevant func-
tions described by a probability distribution depends on the
maximumof themean values of correlations of random func-
tions with input–output functions from the given class.

The paper is organized as follows. In Sect. 2, we introduce
notations and basic concepts on approximation of func-
tions on finite domains by feedforward networks with linear
outputs. In Sect. 3, a probabilisticmodel of relevance of func-
tions for a given application domain is presented. In Sect. 4,
correlations of randomly chosen classifierswith input–output
functions are studied using the method of bounded differ-
ences. Section 5 extends the estimates to cases which do
not satisfy the independence condition. Section 6 addresses
consequences of the probabilistic estimates for feedforward
networks. Section 7 is a brief discussion.

2 Approximation of functions on finite
domains by input–output functions

Let

U := {x1, . . . , xm} ⊂ R
d

be a finite set. We denote by

F(U ) := { f | f : U → R}

the set of all real-valued functions on U. F(U ) is isomet-
ric with the m-dimensional Euclidean space R

m and thus
functions onU can be seen asm-dimensional vectors.F(U )

inherits from R
m the inner product

〈 f , g〉 :=
∑

u∈U
f (u)g(u)

and the associated Euclidean norm

‖ f ‖2 := √〈 f , f 〉.

We denote by

B(U ) := { f | f : U → {−1, 1}}

the set of all functions on U with values in {−1, 1}. This set,
which can be seen as the Hamming cube {−1, 1}m , models
the set of all binary classifiers on U . Instead of using the
Hamming distance, we measure errors in the l2-norm inher-
ited from R

m . For r > 0, we denote by

Sr (U ) := { f : U → R | ‖ f ‖2 = r}
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the sphere of radius r in F(U ).
We focus on approximation of functions from subsets

of F(U ) by functions computable by feedforward networks
with linear outputs. Such networks compute functions of the
form

spann {G(., v) | v ∈ V } :=
⎧
⎨

⎩

n∑

j=1

wiG(., v j ) | v j ∈ V

⎫
⎬

⎭ ,

where n is the number of units in the last hidden layer,
w1, . . . , wn are output weights, V is a set of inner network
parameters, and G : U × V is a function of two vector
variables u ∈ U and v ∈ V . The parameterized family of
functions

G = GV (U ) := {G(., v) : U → R | v ∈ V }

depends on the network architecture and the types of its com-
putational units. For a shallownetworkwith one hidden layer,
G is a dictionary of computational units. For a network with
more hidden layers, it is formed by compositions of hidden
units from subsequent hidden layers.

Sets of the form spann G are invariant undermultiplication
by scalars, i.e., c spann G = spann G for all c ∈ R. As for
any norm ‖.‖ and c > 0 one has

‖c f − spann G‖ = c ‖ f − spannG‖,

examples of functions with arbitrarily large or small errors
measured by metrics induced by any norm ‖.‖ in approx-
imation by sets of the form spann G can be obtained by
multiplication by suitable constants c. So estimates of errors
in approximation of functions by networks with a linear out-
put only have sense when functions to be approximated and
approximating functions have the same norms. Sometimes,
it is convenient to consider normalized functions. In the case
of binary classification, we consider functions with values
in {−1, 1} instead of {0, 1}. Such functions have the same
norms equal to

√
m, where m is the size of the domain.

Errorsmeasuredby the l2-normof functions approximated
by functions of the same l2-norm can be studied in terms
of their correlations, expressed as inner products. For all
f , g ∈ F(U ),

‖ f − g‖22 = ‖ f ‖22 + ‖g‖22 − 〈 f , g〉

and in particular for normalized functions f = f ◦ and g =
g◦,

‖ f − g‖22 = 2 − 〈 f , g〉.

In the sequel, we take into account that correlations of
functions on large domains are influenced by geometrical
properties of high-dimensional spaces.

3 Probabilistic model of relevance
of computational tasks

Weconsider a finite setU := {x1, . . . , xm} ⊂ R
d , whose ele-

ments represent data to be classified (such as feature vectors,
colors of linearly ordered pixels of photographs or scattered
vectors of medical symptoms). Often, data sets to be pro-
cessed are large.

The numbers of binary and multiclass classifiers on U
grow with cardU = m exponentially. Also, the numbers of
uncorrelated real-valued functions (nearly orthogonal) on the
domain U grow with its size exponentially. These numbers
were studied in Kainen and Kůrková (1993), Kainen and
Kůrková (2020) in terms of the quasiorthogonal dimension
dimε m, defined as the maximal number of unit vectors in
R
m such that the absolute values of their inner products are

at most ε. It was proven there that dimε m is bounded from
below by emε2 .

Nevertheless, in practical applications most functions
from these unmanageably large sets are not likely to rep-
resent any task of interest. Thus, it is not necessary to search
for networks capable of an efficient computation of all func-
tions on a given finite domain. Although many classes of
networks enjoy the universal representation property (i.e.,
they can exactly compute all of them, see, e.g., Ito 1992),
for many tasks their use is limited by an increasing model
complexity. Arguments proving the universal representation
property assume that networks potentially have numbers of
units equal to the sizes of finite domains of functions to be
represented. A prior knowledge about probability that certain
functions are irrelevant or that their relevance is small can
considerably reduces the requirements on expressive power
of classes of neural networks. In particular, it can help to
select types of networks capable of computing or approx-
imating relevant functions with much smaller numbers of
units (see, e.g., Gnecco et al. 2011a, b; Kainen et al. 2012;
Kůrková 2012).

We model relevance of computational tasks by a proba-
bility distribution on a subset T (U ) of the set F(U ) of all
functions on U . In particular, we focus on the case where
T (U ) is formed by the set of all binary classifiers B(U ). Let
P be a probability measure on T (U ). A function f ∈ T (U )

randomly chosen with respect to P induces random variables

X1 := f (x1), . . . , Xm := f (xm).
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4 Concentration of values of inner products

To investigate correlations of a fixed function h with classi-
fiers randomly chosen according to a given probability onU ,
we define a function Φh of m random variables as

Φh(X1, . . . , Xm) :=
m∑

i=1

h(xi )Xi . (1)

When the random variables are generated by a function f on
{x1, . . . , xm}, i.e., X1 = f (x1), . . . , Xm = f (xm), one has

Φh(X1, . . . , Xm) =
m∑

i=1

h(xi ) f (xi ) = 〈h, f 〉.

Geometry of high-dimensional spaces implies that almost
all values of sufficiently smooth functions of large numbers
of random variables concentrate around their mean values.
One of such smoothness conditions is a version of Lipschitz
property considered with respect to coordinates. We call a
function

Φ : A1 × . . . × Am → R

Coordinate-Wise Lipschitz (CWL) with parameters c1, . . . ,
cm if for all i = 1, . . . ,m and all vectors a, a′ ∈ A1 × . . . ×
Am , which differ just in the i-th coordinate,

|Φ(a) − Φ(a′)| ≤ ci .

Recall that the Hamming distance of two vectors a, a′ ∈
{−1, 1} is defined as the number of entries in which they
differ. So for Ai = {−1, 1}, i = 1, . . . ,m, the CWL condi-
tion implies Lipschitz continuity on {−1, 1}m with parameter
c̄ = maxi=1,...,m ci with respect to the Hamming distance.

The following theorem provides a concentration of mea-
sure inequality for functions of independent randomvariables
satisfying the CWL condition with parameters c1, . . . , cm ,
such that the l2-norm ‖c‖2 of the parameter vector c =
(c1, . . . , cm) is sufficiently small.

Theorem 1 (Dubhashi and Panconesi 2009, p.70) Let X1,

. . . , Xm be independent random variables with values in
ranges A1, . . . , Am, resp., and Φ : A1 × . . . × Am → R

a function satisfying the CWL condition with parameters
c1, . . . , cm. Then, for every t > 0 one has

P
[
|Φ − E(Φ)| > t

]
≤ e−2t2/γ , (2)

where γ := ∑m
i=1 c

2
i .

The bound (2) does not explicitly reflect the role of the
number m of random variables. To get some insight into its
role, we set t := λm. Then, we obtain the bound

P

[ |Φ − E(Φ)|
m

> λ

]
≤ e−2λ2 m2/γ . (3)

The bound 3 implies

P

[ |Φ − E(Φ)|
m

≤ λ

]
> 1 − e−2λ2 m2/γ (4)

which shows that when m is large and γ does not outweigh
m2, then almost all values of Φ

m are concentrated around
E(Φ)
m . Thus, Theorem1 can be applied to functions of random

variables satisfying the CWL condition with the parameter
vector c = (c1, . . . , cm) such that ‖c‖22 grows with m at a
subquadratic rate.

Applying Theorem 1 to inner products of a fixed real-
valued function with randomly chosen binary-valued func-
tions, we obtain the following upper bound.

Theorem 2 Let P be a product probability distribution on
the set B(U ) of all binary classifiers on U ⊂ R

d , and h be
a real-valued function on U. Then, for every λ > 0 and f
randomly chosen according to P, the following inequalities
hold

(i)

P
[ ∣∣∣〈 f ◦, h◦〉 − E〈 f ◦, h

‖h‖2 〉
∣∣∣ > λ

]
≤ e−mλ2

2 ;

(ii) when ‖h‖2 = √
m,

P
[ ∣∣∣〈 f ◦, h◦〉 − E〈 f ◦, h◦〉

∣∣∣ > λ
]

≤ e−mλ2
2 .

Proof For the function Φh defined in (1), we have |Φh(X1,

. . . , Xi−1, 1, Xi+1, . . . , Xm)−Φh(X1, . . . , Xi−1,−1, Xi+1,

. . . , Xm)| = 2|h(xi )| for all i = 1, . . . ,m. Thus,Φh satisfies
the CWL condition with coefficients ci = 2|h(xi )|. As P is
a product probability, X1, . . . , Xm are independent and so
the statement follows by Theorem 1 with t = ‖h‖2 √

m and
γ = ‖c‖22 = 4‖h‖22. �


Theorem 2 shows that on large domains, correlations of
a fixed function (in particular an input–output function of
a feedforward network) with binary classifiers randomly
chosen according to a product distribution behave almost
deterministically, in the sense that most correlations concen-
trate around their mean value. Thus, if there exists a network
input–output function h having relatively large mean value
of inner products with randomly chosen binary classifiers,
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then with a high probability a random classifier can be well
approximated by h.

5 Concentration of correlations in some
dependent cases

The theorems in the previous section assume that the random
variables X1 = f (x1), . . . , Xm = f (xm) are indepen-
dent, which means that the probability distribution P can be
expressed as a product of probability distributions of values
of Xi , i = 1, . . . ,m. In real applications, often this assump-
tion cannot be guaranteed. But independence of random
variables is an essential part of proofs of most concentra-
tion inequalities (see, e.g. Dubhashi and Panconesi 2009).
Without this assumption, only few concentration inequalities
hold, where a weakening of the independence condition is
compensated by strengthening smoothness properties of the
function of random variables. Such concentration inequali-
ties, which follow from the Azuma–Hoeffding Inequality and
theory of martingales (see, e.g., Azuma 1967; Chung and
Lui 2005; Dubhashi and Panconesi 2009, Theorem 5.1, p.
62; Dubhashi and Panconesi 2009, p. 58) are called Bounded
Difference Conditions (Dubhashi and Panconesi 2009).

Here, we use an extension of the coordinate-wise Lip-
schitz (CWL) condition employed in the previous section.
To define it, we first introduce some notation. For random
variables X ,Y , by E(X |Y = y) is denoted the conditional
expectation of X on occurrence of value y of the random
variable Y . We use boldface to abbreviate sequences of
random variables, sequences of real numbers, and parts of
these sequences formed by the first i elements, i.e., X :=
(X1, . . . , Xm) , Xi := (X1, . . . , Xi ) , a := (a1, . . . , am) ,
and ai := (a1, . . . , ai ) .

Let X1, . . . , Xm be random variables with values in the
sets A1, . . . , Am , respectively. A function Φ : A1 × · · · ×
Am → R satisfies the Averaged Lipschitz (AL) condi-
tion with parameters c1, . . . , cm with respect to a sequence
X := (X1, . . . , Xm) of random variables if the conditional
expectation satisfies for a1, ā1 ∈ A1

∣∣∣E(Φ | X1 = a1) − E(Φ | X1 = ā1)
∣∣∣ ≤ c1 (5)

and for all i = 2, . . . ,m and ai , āi ∈ Ai

∣∣∣E(Φ |Xi−1 = ai−1, Xi = ai ) − E(Φ |Xi−1 = ai−1,

Xi = āi )
∣∣∣ ≤ ci (6)

(Dubhashi and Panconesi 2009, p. 68, equation (5.7)). Intu-
itively, the AL condition requires that the difference between
two partial averages of Φ obtained by assigning some fixed
values to the first i−1 random variables, two different values

to the i-th variable, and setting randomly (according to the
given distribution) the values of the remaining variables, is
bounded by ci .

For functions satisfying the AL condition, the following
extension of Theorem 1 holds without the assumption of
independence of random variables.

Theorem 3 (Dubhashi and Panconesi 2009, p. 68) Let X1,

. . . , Xm bea sequenceof randomvariableswith values in sets
A1, . . . , Am, resp., andΦ : A1×. . .×Am → R be a function
satisfying the AL condition with parameters c1, . . . , cm with
respect to the random variables X1, . . . , Xm. Then, for every
t > 0 one has

P
[∣∣∣Φ − E(Φ)

∣∣∣ > t
]

≤ e−2t2/γ , (7)

where γ := ∑m
i=1 c

2
i .

To show the effect of increasing the number m of random
variables, we set t := mλ. Then, we get from (7) the bound

P
[∣∣∣

Φ − E(Φ)

m

∣∣∣ > λ
]

≤ e−2λ2m2/γ . (8)

Similarly as in Theorem 1, also in Theorem 3 the size of the
parameter γ is critical for usefulness of the bound (8).

Theorem 3 does not assume that the random variables
X1, . . . , Xm are independent and so it can be used in more
realistic scenarios than Theorem 1. To apply it to the function
Φh representing the inner product with a fixed binary-valued
function h (in particular, with an input–output function of
a neural network), we first define a condition on random
variables. A sequence X1, . . . , Xm,m > 2, of random vari-
ableswith values in {−1, 1} is called conditionally dependent
(CD) with parameters b1, . . . , bm−2 if for every sequence
a1, . . . , am ∈ {−1, 1} and every j = 2, . . . ,m

∣∣∣E(X j |X1 = 1) − E(X j |X1 = −1)
∣∣∣ ≤ b1

m − 2
(9)

and every i = 2, . . . ,m − 2 and every j = i + 1, . . . ,m,

∣∣∣E(X j |Xi−1 = ai−1, Xi = 1)

−E(X j |Xi−1 = ai−1, Xi = −1)
∣∣∣

≤ bi
m − i − 1

. (10)

Note that when X1, . . . , Xm are independent, the mean
values E(X j |Xi−1 = ai−1, Xi = 1) and E(X j |Xi−1 =
ai−1, Xi = −1) are equal and thus the inequalities (9) and
(10) hold with bi = 0 for all i = 1, . . . ,m. The following
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proposition shows that any set of random variables with val-
ues in {−1, 1} is conditionally dependent, but the parameters
might be rather large.

Proposition 1 Every sequence X1, . . . , Xm of random vari-
ables with values in {−1, 1} is conditionally dependent with
parameters bi = 2(m − i − 1), i = 1, . . . ,m − 2.

Proof By the definition of the CD condition, to prove the
statement it is sufficient to verify that for j = i + 1, . . . ,m,

E(X j |Xi−1 = ai−1, ai = 1)

−E(X j |Xi−1 = ai−1, ai = −1 ) ≤ 2.

By the definition of conditional probability, we have

E(X j |Xi−1 = ai−1, ai = 1)

= P(X j = 1&Xi−1 = ai−1, Xi = 1) − P(X j = −1&Xi−1 = ai−1, Xi = 1

P(Xi−1 = ai−1, Xi = 1)

and

E(X j |Xi−1 = ai−1, ai = −1)

= P(X j=1&Xi−1=ai−1, Xi=1) − P(X j= −1&Xi−1=ai−1, Xi = −1)

P(Xi−1=ai−1, Xi = −1)
.

Set t1,1 = P(X j = 1&Xi−1 = ai−1, Xi = 1),

t−1,1 = P(X j = −1&Xi−1 = ai−1, Xi = 1),

t1,−1 = P(X j = 1&Xi−1 = ai−1, Xi = −1)

t−1,−1 = P(X j = −1&Xi−1 = ai−1, Xi = −1).

As t1,1, t−1,1, t1,−1, t−1,−1 ∈ [0, 1] and t1,1+ t−1,1+ t1,−1+
t−1,−1 ≤ 1, we obtain

t1,1 − t−1,1

t1,1 + t−1,1
− t1,−1 − t−1,−1

t1,−1 + t−1,−1
≤ 2.

�

The next theorem shows that the property of conditional

dependence is useful in cases when it holds with sufficiently
small parameters. It gives a probabilistic estimate of the devi-
ation of inner products from their mean value which depends
on b := maxi=1,...,m−2 bi .

Theorem 4 Let U := {x1, . . . , xm} ⊂ R
d be finite, h ∈

B(U ), and P a probability distribution on B(U ) such that
for f randomly chosen according to P, the random variables
X1 := f (x1), . . . , Xm := f (xm) are conditionally depen-
dent with parameters b1, . . . , bm−2. Then, for every λ > 0
and b := maxi=1,...,m−2 bi , the following inequalities hold

(i) P
[
|〈 f , h〉 − E〈 f , h〉| > mλ

]
≤ e

− 2mλ2

(2+b)2 ;

(i i) P
[
|〈 f ◦, h◦〉 − E〈 f ◦, h◦〉| > λ

]
≤ e

− 2mλ2

(2+b)2 .

Proof ToapplyTheorem3 to the functionΦh(X1, . . . , Xm) :=∑m
i=1 h(xi )Xi = 〈 f , h〉, we estimate parameters of the con-

ditional dependence of random variables X1, . . . , Xm . For
every i ∈ {1, . . . ,m} and every fixed sequence a1, . . . , am
with ai ∈ {−1, 1} and for all j = 1, . . . , i − 1, we have

|E(Φh |Xi−1 = ai−1, Xi = 1) − E(Φh |Xi−1 = ai−1, Xi = −1)|

= ∣∣
i−1∑

j=1

h(x j )a j + h(xi )

+
m∑

j=i+1

h(x j )E(X j |Xi = ai , ai = 1 )

−
i−1∑

j=1

h(x j )a j+h(xi )−
m∑

j=i+1

h(x j )E(X j |Xi−1=ai−1, ai = −1 )
∣∣

=
∣∣∣ 2h(xi ) +

m∑

j=i+1

h(x j )
(
E(X j |Xi−1 = ai−1, ai = 1)

−E(X j |Xi−1 = ai−1, ai = −1 )
)∣∣∣. (11)

If i ≤ m − 2, then (11) is bounded from above by 2 + (m −
i − 1) bi

m−i−1 = 2 + bi . As |h(xi )| = 1, for i = m − 1, (11)
is bounded by 2, and for i = m, it is bounded by 1. Thus Φh

satisfies theAL conditionwith γ = ∑m−2
i=1 (2+bi )2+2+1 ≤

m(2 + b)2 and so the statement follows from the bound (8),
which is implied by Theorem 3. �

Theorem 4 shows that inner products of a fixed binary-valued
function h with randomly chosen classifiers f for which the
random variables X1 = f (x1), . . . , Xm = f (xm) are con-
ditionally dependent with sufficiently small parameters are
concentrated around their mean value. The larger the domain
U and the smaller the parameters, the sharper the concentra-
tion. For example, for b = 2, Theorem 4 gives the bound

P
[
|〈 f ◦, h◦〉 − E(〈 f ◦, h◦)| > λ

]
≤ e−mλ2

8 . (12)

Setting λ = m−1/4, we get from the bound (12) an exponen-

tially decreasing upper bound e−m1/2
8 on the probability that

the inner product of a normalized randomly chosen function
does not deviate from the mean value by more than m−1/4.

Note that random variables satisfy the CD condition with
all parameters bi = 2 provided

∣∣∣E(X j |Xi−1 = ai−1, Xi = 1)

−E(X j |Xi−1 = ai−1, Xi = −1)
∣∣∣

≤ 2

m − i − 1
. (13)

This holds for sequences of random variables, for which with
increasing i fixing either Xi = 1 or Xi = −1 has increasing
influence on the expectation. For such sequences, the smallest
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difference of expectations is for fixing either X1 = 1 or X1 =
−1.This canhappenwhen randomvariables are ordered from
the least significant one to the most significant one.

By Proposition 1, for every distribution P on B(X), the
functionΦh is conditionally dependent with parameters bi =
2(m − i − 1). Then, b = maxi=1,...,m−2 bi = b1 = 2(m − 2)
and the upper bound in Theorem 4 is

e
− 2mλ2

(2+b)2 = e
− mλ2

2(m−1)2 .

Thus, for a general distribution, the upper bound following
from Theorem 4 does not guarantee concentration of values
of inner products.

6 Optimal approximation of random
classifiers by feedforward networks

As for normalized functions, approximation errors in the l2-
norm decrease with increasing correlations, our results show
that a critical factor for suitability of a class of networks for
computing tasks modeled by a probability P is themaximum
of the mean values of inner products with network input–
output functions. For a class of feedforward networks with
linear outputs computing input–output functions from the set
spann GV (X), where

GV (U ) := {G(., v) : U → R | v ∈ V },

and for a probability P on B(X), we define

MP (n, V ) := max
h∈spannGV (X)

{E〈 f , h〉}.

By Theorems 1 and 3, concentration of correlations holds for
probability distributions with respect to which the function
Φh is sufficiently “smooth.” In such cases, the correlations
behave, in a qualitative way, “almost deterministically.”

The critical factor for suitability of a class of networks
for computing tasks whose relevance is characterized by the
probability P is the size of MP (n, V ). The worst case is
when P is the uniform distribution, i.e., when there is no
prior knowledge available. Then, due to the symmetry, the
mean values of inner products of any fixed function h with
uniformly randomly chosen functions fromB(X) are equal to
zero. Thus, almost all randomly chosen functions are orthog-
onal to h. A class of networks can be suitable for computation
of uniformly randomly chosen classifiers only when its set of
input–output functions is “large enough” so that small neigh-

borhoods of its elements of radii e−mλ2
2 in angular distance

cover the set of all binary classifiers B(X).
Also for some nonuniform distributions,MP (n, V ) can be

small. In such cases, almost any randomly chosen function is

nearly orthogonal to all input–output functions computable
by a given class of networks and so the situation is sim-
ilar to the case of uniform probability. Such networks are
not suitable for tasks characterized by P unless they gener-
ate exponentiallymany input–output functions coveringwith
their small neighborhoods the set B(X). The size and cov-
ering capability of the set spannGV (U ) can be increased by
increasing n and/or V .

On the other hand, if for some input–output function h,
the mean value of inner products is large (and hence also
MP (n, V ) is large), then almost all randomly chosen func-
tions can be quite well approximated by that input–output
function.Networks computing functionswith largemeanval-
ues of inner products with random classifiers are optimal for
tasks characterized by the probability distribution P .

If the maximum MP (n, V ) of the mean values of inner
products has medium size, then some improvement can be
achieved if one extends the set of input–output functions by
increasing the number n of units in the last hidden layer, or by
extending the set V of network parameters, or by choosing
different types of units.

7 Discussion

To deal with unmanageably large numbers of classification
tasks on data sets of even moderate sizes, we investigated
a probabilistic model describing relevance of tasks. We
explored optimization of feedforward networks with lin-
ear outputs for classification tasks in terms of correlations
between randomly chosen functions according to a given
probability and network input–output functions. As corre-
lations are related to approximation errors measured in the
l2-norm, their distributions provide some insights into suit-
ability of various classes of networks for computing random
classifiers selected according to a given probability distri-
bution. To include also cases where assignments of class
labels to feature vectors are not independent, we exploited
extensions of the Azuma–Hoeffding inequalities which hold
without the naive Bayes assumption. By applying themethod
of averaged bounded differences to distributions with respect
to which inner products with network input–output func-
tions are sufficiently “smooth,” we showed that in some
cases correlations of randomly chosen function concentrate
around their mean values. Thus, on large domains, errors
in approximation of normalized random functions behave
almost deterministically. This is rather surprising and pro-
vides qualitative insights into capabilities of feedforward
networks to approximate large classes of functions. We
showed that the critical factor for optimization of various
classes of feedforward networks for a given type of classifi-
cation tasks is the maximum of the mean values of the inner
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products of input–output functions with randomly chosen
classifiers.

When a prior knowledge is limited and a class of tasks
is described by an almost-uniform distribution, optimal sets
of input–output functions must be large enough to cover the
set of all tasks by small neighborhoods of the input–output
functions. Someunderstandingof network capabilities canbe
obtained by investigating covering numbers of dictionaries
of computational units and sets of input–output functions.
Another important characterization of these sets is their
coherence (Tropp 2004), defined as themaximumof absolute
values of inner products of pairs of distinct input–output func-
tions and thus it is related to correlation. Coherencemeasures
how much two input–output functions are similar. Although
coherence only reflects extreme correlations, it is easy to cal-
culate and captures in a significant way the behavior of sets
of input–output functions and computational units.
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