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ABSTRACT

The use of multiple clocks has been a favoured approach to mod-
elling the multiple timescales of sequential data. Previous work
based on clocks and multi-timescale studies in general have not
clearly accounted for multidimensionality of data such that each
dimension has its own timescale(s). Focusing on body movement
data which has independent yet coordinating degrees of freedom,
we propose a Movement in Multiple Time (MiMT) neural network.
Our MiMT models multiple timescales by learning different lev-
els of movement interpretation (i.e. labels) and further allows for
separate timescales across movements dimensions. We obtain 0.75
and 0.58 average F1 scores respectively for binary frame-level and
three-class window-level classification of pain behaviour based on
the MiMT. Findings in ablation studies suggest that these two ele-
ments of the MiMT are valuable to modelling multiple timescales
of multidimensional sequential data.
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1 INTRODUCTION

A complete movement, e.g. sit-to-stand, can be defined in terms of
layers of sequences of events (such as trunk flexion, vertical hip dis-
placement) with each event involving different (sets of) anatomical
segments [5]. Due to changes in goal and/or attention, an observer
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may group events in the movement differently at each repetition of
observation [16]. This multiple timeline of movement both at the
points of performance and interpretation motivates this paper on
movement encoding and classification at multiple timescales.

We take the problem of automatic detection of bodily-expressed
pain behaviours (e.g. stiffness in movement, bracing) [4] as a case
study. Pain behaviour detection could be a valuable capability for
technology for chronic pain physical rehabilitation as it would en-
able the technology to call the attention of a person with pain to
their unhelpful strategies for performing feared or painful move-
ments [10]. These strategies can make the given movement more
challenging, cause non-functional muscle tension, and reinforce
avoidance of the use of the painful location [10]. Previous bodily-
expressed pain behaviour detection studies have focused on classifi-
cation at single timescales. For example, in [1] the authors modelled
the duration (as a proportion) of pain behaviours in a movement in-
stance while [14] modelled the presence/absence of pain behaviours
in fixed window segments of movement instances.

We hypothesize that learning multiple timescales of a pain be-
haviour label will improve automatic detection of the label at each
of the timescales. Further, addressing the earlier-discussed multiple
layers of movement by different anatomical segments could addi-
tionally increase performance. Thus, we propose the Movement in
Multiple Time (MiMT) neural network architecture characterised
by a distributed time encoding of low level movement features and
a joint prediction of pain behaviour at multiple timescales.

In the rest of the paper, we discuss related work and describe
our MiMT architecture against this background. We then report
its performance on a real dataset of exercise movements of people
with chronic pain and results of ablation studies which highlight
the value of each of the two main components of the MiMT. We
review previous studies in Section 2 and present our architecture in
Section 3. The experiments on the MiMT network and their results
are discussed in Sections 4 and 5 with a conclusion in Section 6.

2 RELATED WORKS

One of the earliest studies on modelling multiple timescales is the
work of [15] who proposed the multiple timescales recurrent neural
network (MTRNN) [11]. The MTRNN is a continuous time recurrent
neural network with at least two sets of hidden layers, the first of
which has a short time delay (e.g. ¢ = 5) while each additional
layer has a longer latency, e.g. 7 = 70. Analysis of the activation
values at each layer in a movement forecast task suggests that
indeed the shorter-time-delay layer(s) learn to encode movement
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primitives while the longer-time-delay layer(s) encode a higher
level of abstraction of the movement. They additionally found in a
movement generation task, that error increased the closer to 1 the
ratio between the time delays of the two sets of layers, highlighting
the importance of learning at multiple time resolutions.

The clockwork recurrent neural network (CWRNN) of [6] takes a
similar approach of multiple modules with different update speeds.
However, their multiple scales of time are implemented within a
single layer. The units in the layer are sectioned into N blocks each
with its own speed, and a connection between blocks goes from
the slower to the faster. Further, for each time ¢, an update in a
block only occurs if ¢ is divisible by its speed 7. In experiments on
audio sequence generation and classification of aural words, with
the speed for each block n € N set to 2”71, the CWRNN was found
to perform better than the long short-term memory neural network
(LSTMNN) in learning long sequences.

In the hierarchical multiscale RNN (HM-RNN) [2], each layer’s
update behaviour depends on its input instead of fixed clocks. For
example, a layer resets its state if it detected a boundary in the
previous time step; before a reset, the given layer [ first passes its
output to the layer [+1 above it. Boundary detection is learnt during
training. The same layer updates its state if instead the layer below it
detected a boundary at the previous time step. Otherwise, the layer
simply copies its states from the previous time step. The output
of all the recurrent layers are then collectively input into further
modules. Analysis of the boundaries detected in the HM-RNN for
character language modelling showed that while the first LSTM
layer learnt to detect a boundary at the start of every word, the
second LSTM layer usually detected at the end of multiple words.

Although [7] used the more common fixed clock scheme, with
their convolutional multitimescale echo state network (ConvMESN)
the recurrent layers are connected in parallel rather than serially;
the weights of the recurrent layers are fixed during training. Further,
time-dimension convolutions of multiple kernel sizes are applied to
the output of each recurrent layer. These convolution outputs are
then max-pooled across time and concatenated for each recurrent
layer and finally altogether fused using a fully-connected layer.
Similar to the CW-RNN [6], the ConvMESN uses a time delay rule of
Bi"! B e N, B > 1 for each recurrent layer i. The architecture was
explored on human action recognition tasks and the authors found
that the ConvMESN performed better than a similar model but
with the same time delay across all recurrent layers. Visualisations
of the activations of each recurrent unit indeed suggest that the
ConvMESN encodes different timescales of movement.

The idea of imposed time delays in recurrent updates are not at all
used in the ENHANCE algorithm of [8]. Instead, their architecture
consists of multiple RNNSs trained additively. The first is initially
trained as a simple, forecasting RNN which is then upgraded to
a gated RNN and retrained based on reinforcement learning. The
input into the second is a cluster of the embeddings from this gated
RNN. The second RNN is trained in a similar manner to the first,
and so on until the last RNN in the hierarchy.

While the approaches used in above-discussed studies have
proven valuable, there are two aspects of multiple timescales in
sequential data that are overlooked by these studies. In this paper,
we present our Movement in Multiple (MiMT) architecture which is
made up of two main components that respectively address these
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two problems. The first problem is the multiple timescales of descrip-
tion (by an observer) of sequential data. For a simple illustration,
consider an observer who provides a single description [ for a period
t; to t. Each time step t; in the given period shares the descrip-
tion I. Conversely, the observer could instead provide a description
for each time step t; and a holistic description then derived for
any subset of the period. The findings in the previous studies sug-
gest that jointly learning these multiple timescales of descriptions
can improve learning performance for each description timescale.
Thus, the MiMT models the same (pain behaviour) label at multiple
timescales. For human movement, the second problem is that there
exists an additional time structure such that each set of anatomi-
cal segments can act in its own timeline in addition to a common
timeline that allows these sets of segments to act together when
appropriate. For example, I can write with one hand while the other
scratches my face (unconnected simultaneous events), my hands
could come together in a clap (coordinated simultaneous events), or
they could both be typing on a keyboard (coordinated serial events).
To further account for this independence-cum-coordination be-
tween groups of segments, time encodings for segments of the
human body are separated but connected in our MiMT architecture.
We describe the network in the next section.
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Figure 1: Movement in Multiple Time (MiMT) architecture.
Best viewed in colour.

3 MOVEMENT IN MULTIPLE TIME (MIMT)
ARCHITECTURE

An overview of the Movement in Multiple Time (MiMT) architecture
is shown in Figure 1. It has two main features. First, it computes time
encodings separately for different groups of anatomical segments
but using a shared encoder. Let us consider a human movement
specified by X = [X1, X2, ..., X7] where X; = {Xl,XtZ, ...,Xt]}, Jis
the number of anatomical segments, and T is the duration of the
movement. In the MiMT architecture, a common recurrent encoding
f is applied to each x where x; C X;, x; # 0, and there exists a
path in x; between any pair (x}’, x) in x;. For example, given 3D
full-body joints positions over time as X, we can define five xs,
x¢ C Xt Vx, as shown in Figure 1: right lower limb and torso, left
lower limb and torso, right upper limb and torso, left upper limb
and torso, head and torso. This is the anatomical segments grouping
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which we used in our implementation of the MiMT architecture in
this paper. We use LSTM layers as the time encoder.

The other main element of the MiMT network is its multiple out-
puts YL, Y2, .., YN at different timescales for the same label Y, i.e.
ym = [Ylm, Yzm, . YT’ZI], 7; # 71 Vi,k < N and 7,5 > 1. In the exam-
ple shown in Figure 1, N=2 withr; = Tand rp = 1. YL Y2 . YN are
simultaneously learnt in a multi-task learning structure and based
on a concatenation of all f(x) Vx. This is processed by additional
modules before then being passed to each of the N classifiers (or
decoders or regressor). In our use of the MiMT in the experiments
reported in the next sections, we use an attention mechanism that
borrows from the transformer model of [12] for further encoding.
The maximum across activations of three attention heads were ad-
ditionally encoded by a LSTM layer followed by a fully connected
layer shared across time. The corresponding embedding becomes
an input into each of a frame-level (r, = T) and window-level
(tm = 1) classifier. For the frame level, we use a sigmoid classifier,
after pooling. For the window level, the embedding is multiplied by
the concatenated activations of the time encoder which are then
passed through a final LSTM and an additional softmax activation.

4 EXPERIMENTS

We explored the MiMT neural network on pain behaviour detection
based on the EmoPain dataset [1] which contains 3D positions for
26 full-body joints of people with chronic pain performing exercise
movements (e.g. sit-to-stand, bend) and guarding behaviour anno-
tations (guarding present/positive or absent/negative) provided in
continuous time by each of 4 clinicians. We excluded eight of the 26
joints (left and right fingertips, ankles, heels, and toes) due to the
higher level of noise in their position estimates. Since the remaining
joints already include the head and neck, we additionally excluded
the crown. This resulted in 17 full-body joints.

We created data instances based on overlapping windows of
length of 180 frames (3 seconds) [13] and overlap of 15 frames. To
obtain the ground truth for each frame, we took the majority vote
across raters and frames with tied votes resolved as having positive
label. The window-level label was set as negative if all the frames
in the window were negative for guarding, positive if all frames in
the window were positive, and mixed otherwise. To manage class
imbalance in the training and validation sets, we used data aug-
mentation methods similar to [9] to randomly oversample minority
classes. This resulted in 17,185 and 1,394 instances respectively.

Each LSTM in the shared time encoder of the MiMT was set up to
have 3 units in line with the dimensions for each joint position. The
LSTM and fully connected layer immediately after the attention
layers had 15 units, the same size as the channel dimension of
their inputs. We trained the network using Adam optimizer and set
learning rate and batch size to 0.005 and 200 respectively.

We discuss results based on hold-out validation (with disjoint
subject sets in training, validation, and test sets) in the next section.

5 RESULTS AND DISCUSSION
5.1 Performance of the MiMT Model

The F1 scores for each class and the confusion matrices for the
unbalanced test set are shown in Tables 1 and 2 respectively.
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As can be seen from the confusion matrices, the true positives
for the negative and positive classes are better than chance level
for both frame and window level classification. In the window level
classification, the mixed class is unsurprisingly strongly confused
with the other two classes. The two tables further show the level
of imbalance in size between the classes, with the negative class
having at least 6 times more number of instances at the frame
level than the positive class and more than twice and 9 times more
instances at the window level than the positive and mixed classes
respectively. This high level of imbalance makes it challenging to
interpret the results and understand the performance of the MiMT.

To address this, we follow the recommendation in [3] by further
reporting performance using test sets balanced with the same data-
augmentation-based oversampling technique that we used for the
training and validation sets. In Table 1 we present the average result
based on 5 of such balanced test sets. There is little variation in
the performance across the 5 sets, with less than 0.008 standard
deviation in F1 score per class. The results show performances
much higher than chance (i.e. F1 score = 0.5) for the frame level
classification with average F1 score across the two classes = 0.75.
For the window level classification, the average F1 score across the
classes is 0.58 also much better than chance (F1 score = 0.33 in this
case). In this timescale, while the performance for the negative and
mixed classes are each much better than chance, the performance
for the positive class is only slightly above chance. We found that
the highest confusion (61%) for the positive class is with the mixed
class. Interestingly, with the unbalanced test set, this class (the
positive class) performs much better than the base rate in that set.
It is unclear what this finding implies, but in the envisioned use of
the pain behaviour detection model, confusion between the mixed
and positive classes is acceptable as it is sufficient to be able know
when there has at all been a positive label in a given window.

5.2 Ablation Studies on the MiMT Architecture

To understand the influence of the 2 primary characteristics of the
MiMT (separated but shared time encoding, and multiple timescales
of the same label) on its performance, we conducted 2 ablation
studies. In the first study (MiMT with single input time), the only
change to the MiMT was that the time encoder in the architecture
was applied to X as a single input rather than the distributed x ¢ X
Vx. In the second part of the study, the only change to the MiMT
was that only one timescale of the label was learnt at a time rather
than jointly in a multitask scheme (MiMT with frame time output
only and MiMT with window time output only).

As it can be seen in Table 3, assuming a single time line for
all anatomical segments (MiMT with single input time) reduces
frame level classification performance for each class and the overall
window level classification performance although the mixed class is
better detected. For the MiMT with frame time output only and the
MiIMT with window time output only, performance is also reduced
per class for frame and window level classification respectively.
These findings, which disregard the number of trainable parameters
in the network, suggest that having a separate but shared time
encoding across groups of anatomical segments as well as multiple
timescales of output for the same label are indeed valuable.
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Table 1: Pain Behaviour Classification Results based on our MiMT Architecture. The data size (and corresponding proportion)
are shown for each class and each classification task, to the neareast thousand for the frame level classification. For the results
based on the balanced test set, the average F1 score (and standard deviation) over 5 runs is given.

Unbalanced Test Set Balanced Test Set
Class Frame level Window level Frame level Window level
F1 score Data size F1 score  Data size F1 score Data size F1 score Data size

Negative | 0.85 620,000 (0.87) | 0.89 3,289 (0.83)
Mixed - - 0.098 371 (0.094)
Positive 0.41 90,000 (0.13) 0.39 291 (0.074)

0.70 (0.001) 854,000 (0.48)

0.80 (0.001) 920,000 (0.52)

0.85 (0.001) 3,289 (0.33)
0.52 (0.002) 3,283 (0.33)
0.37 (0.008) 3,283 (0.33)

Table 2: Confusion Matrices for Pain Behaviour Classifica-
tion based on Our MiMT Architecture (Unbalanced Test Set)

those timescales. This MiMT architecture can be easily integrated

Window level

MIMT
Class Negative Mixed Positive
Ground  Negative | 2864 (877) 153 (5%) 272 (8%)
Truth Mixed 192 (52%)  29(8%) 150 (40%)
Positive 83 (29%) 36 (12%) 172 (59%)
Frame level
MIMT
Class Negative Positive
Ground Negative | 484057 (78%) 137491 (22%)
Truth Positive | 30180 (34%) 59452 (66%)

Table 3: Ablation Study Results based (Unbalanced Test Set).

The best results per class per classification level in bold.

Architecture (No. of F1score | F1 score
Class .
parameters) Frame Window
Negative 0.72 0.71
MiMT with single Mixed - 0.27
input time (8,346) Positive 0.27 0.098
Average 0.50 0.34
MiMT with frame Ncigatlve 080 i
time output onl Mixed i i
(810) P Y Positive 0.38 -
Average 0.59 -
. . Negative - 0.75
MiMT with
IMT wit Mixed - 0.077
window time o\
output only (1,038) Positive - 0.16
P v Average - 0.33
Negative 0.85 0.89
Mixed - 0.098
MiMT (1
iMT (1,058) Positive 0.41 0.39
Average 0.63 0.46

6 CONCLUSION

The introduction of multiple but shared timelines across groups
of anatomical segments with multiple output timescales seem to
improve automatic detection of movement behaviour in each of

in any of the clocks-based networks discussed in Section 2.
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