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ABSTRACT
The work reports ongoing research about a computational method,
based on cooperative games on graphs, aimed at detecting the
perceived origin of full-body human movement and its propagation.
Compared with previous works, a larger set of movement features
is considered, and a ground truth is produced, able to assess and
compare the effectiveness of each such feature. This is done through
the use of the Shapley Value as a centrality index. An Origin of
Movement Continuum is also defined, as the basis for creating a
repository of movement qualities.
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1 INTRODUCTION
The perceived origin of movement is the point at which a move-
ment appears to originate from the point of view of an observer. A
first proposal of a computational method to detect the perceived
origin of movement was made in [1] and further investigated in [2].
The method is based on a mathematical game built over a suitably-
defined graph structure representing the human body. Our objective
here is to further develop this computational method for the analy-
sis of expressive full-body movement qualities, by extending the
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findings of [1, 2] and providing a refined implementation. Differ-
ently from such works, we consider several movement features
in the implementation of the method, namely speed, tangential
acceleration, and angular momentum (see Section 3), in order to see
which feature is best at predicting the origin of movement when this
is computed using Shapley values (a well-known solution concept
in cooperative game theory). So, we evaluate how the perceived
origin of movement is affected by different movement qualities.

The remainder of this paper is structured as follows. Section 2
details the state of the art and the motivations for this research.
Next, Section 3 covers the details of our approach, focusing on a co-
operative game index used to estimate the importance of joints, on
the description of our dataset, and also outlining the newmovement
features we introduce in this work. Then, in Section 4, we discuss
the ongoing annotation process and an online tool we developed
to collect ground truth. Section 5 presents our first results. In Sec-
tion 6, we indicate our ongoing work about creating an innovative
taxonomy of movement. Lastly, we conclude and discuss possible
future extensions of this research.

2 STATE OF THE ART
As detailed in the next paragraphs, the motivation for this research
is threefold: 1) the role of body expressions in movement analysis;
2) the connections between neuroscience and movement analysis;
3) the leading joint hypothesis [3].

First of all, several studies (see for example the survey paper
[4]) have investigated the role of full-body expressions as a tool for
communication. Results showed that full-body expressions convey a
large amount of information, much greater than previously thought
for non-verbal communication. This suggests that both form and
motion information are highly important in the perception of affect
from full-body expressions.

Secondly, cognitive neuroscience and full-body movement anal-
yses are closely related. The brain organises and categorises human
movement in order to extract meaning from it [5]. Different areas
of the brain are associated to specific roles when it comes to the
perception of movement features. It has been shown that the brain
organises the perception of body movements through form and
features of the movement rather than semantically.

Lastly, the most important motivation for this research comes
from the literature on the leading joint hypothesis on limb motion,
which states that “there is one leading joint that creates a dynamic
foundation for motion of the entire limb” [3]. In other words, joints
of a limb all have different roles when it comes to the production
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of a movement, according to how they are organised in the joint
linkage structure. For example, when considering a punching mo-
tion, seeing arm and hand in motion does not necessarily mean that
these joints are the origin of movement. In fact, when throwing
a punch, the energy and power may originate from the shoulder
joint, or from one foot. Hence, in this instance, the shoulder joint
(or a foot joint) would be considered as the leading joint.

Based on this hypothesis, following [1, 2], we can define what we
mean by the Origin of Movement. Gestures have different meanings
based on their origin of movement, i.e., the exact position (joint)
of the body which initiates this movement . We split the definition
of the Origin of Movement into two scales. The acted origin of
movement refers to how the muscle works at the leading joint, i.e.,
focus is given to the biomechanical level. The perceived origin of
movement is considered from the viewpoint of the observer and is
defined as the point on the body from which a movement appears
to originate. Movement perception from external observation is an
important topic that has been investigated, e.g., also in [6, 7].

This research starts from the results obtained in [1, 2] about the
automatic detection of the perceived origin of movement. Their
approach is based on a cooperative game-theoretical model, specifi-
cally a transferable-utility game, built over a suitably-defined graph
structure representing the human body. The players of this game
are graph vertices, forming a subset of body joints. Each vertex
contributes to a shared goal, that goal being the way a specific
movement feature is transferred among the joints. This cooperative
game-theoretical model is constructed in such a way to allow one
to measure the relevance of various segments in human movement
when performing full-body movement analysis. Each group of play-
ers, called a coalition, has an associated utility, which represents
their joint contribution to the common task. The adopted approach
looks at movement features associated with each joint, namely
speed in the case of [1, 2]. The results from [1] and the additional
validation from [2] show that this approach allows one to automat-
ically detect the origin of movements performed by dancers.

As stated previously, our main aim is to extend this approach
in order to encompass more movement features. We also establish
a ground truth for each movement feature based on annotations
made on our dataset by experts and non experts.

3 DETAILS OF THE METHOD
3.1 Shapley Value
The Shapley value is a popular solution concept in game theory.
It is a measure of the value of each player in a transferable utility
game [8]. The general idea behind the Shapley value is that the
importance of each player equals its average marginal contribution
to the payoff of a coalition when the player joins that coalition
(the average being computed with respect to a suitable probability
measure on the set of such possible coalitions). The Shapley value
represents a fair way to allocate to the players the utility of the
coalition made of all of them (this is called the grand coalition).

In our application, we use the Shapley value to measure the
relevance or importance of a vertex (joint) in the graph-based trans-
ferable utility game proposed in [1]. In simple terms, for such a
game, the joint with the maximum Shapley value at a given moment
is an estimate of the leading joint. In this way, a prediction of the

origin of movement is provided. Moreover, for a specific movement,
the Shapley values of all the joints provide a way to rank those
joints according to their different degrees of leadership.

3.2 Dataset and Marker Set
Our dataset consists of 36 movement fragments from multiple sub-
jects, recorded with the Qualisys motion capture system and syn-
chronized via SMPTE with two videocameras (front and side views
available). The videos consist of the subjects, some of which are
expert dancers, performing simple sequences of movement with a
clear perceived origin. Accompanying these videos and their Mo-
Cap position data are annotations for each recording as to which
parts of the body are moving, the sequence they move in, as well as
the intended origin of movement. These expressive movements rep-
resent normal full-body movements characterised, in any case, by
a clear perceived origin. For example, a video with the annotation
“Left shoulder pulls body making it turn” would be accompanying
a video where the subject performs several trials of this movement,
the shoulder being the origin and the rest of the body following. As
such, when using these videos to predict the origin of movement
using a specific movement feature, we can have a specific baseline
against which we can compare the effectiveness of these features.

Using the Motion Capture technology, the subjects were fitted
with 62 reflective markers, from which specific position data (x,
y, z) were extracted per video and per frame. This constitutes the
full marker set. This full marker set was then transformed into a
reduced marker set considering each cluster obtained by combining
several markers from the full marker set as one joint in the reduced
marker set. This was done by creating a mapping from the full
to the reduced marker set, and by calculating the barycentre of
the joints in each cluster. For example, in the reduced marker set,
the joint named “left hand” corresponds to the barycentre of the
markers associated with the left palm and the left fingers.

As a result of this reduction of the maker set, there could be
some information lost in this mapping. Thus we defined a Mass
Distribution feature. The aim of this feature is to determine how
much information is lost when moving from the full to the reduced
marker set. Our assumption is that each cluster in the full marker
set (which becomes a node in the reduced marker set) behaves
approximately like a rigid body. We defined this Mass Distribution
feature as the root mean square distance of the markers in each

cluster from its barycenter, i.e., as

√∑n
i=1

x i−x̄2

n , where n is the
number of joints in a cluster, x i the position vector of each joint in
the cluster (this information comes from the motion capture data),
and x̄ is the barycentre position vector of that cluster. The same
mass is assumed for each joint of the same cluster.

The output is a scalar for each cluster (at each frame), expressed
in millimetres. The purpose of this feature is to observe if the mass
distribution in each given cluster remains constant over time. If
indeed we see no significant change over time, then we can assume
that the joints defining each cluster in the full model are almost
rigid with respect to one another. Hence, the reduced model can be
thought of as a good approximation of the full model in that part
of the body. However, if we see that there is a lot of change over
time, this would mean that some information is lost when moving
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from the full to the reduced marker set. We then computed for each
cluster the Coefficient of Variation of this feature - the ratio of its
empirical standard deviation with respect to its empirical mean -
to evaluate how much dispersion exists in the data over time. The
results are shown below in Table 1.

Table 1: Coefficient of Variation for each cluster of joints

head 0.08 shoulder centre 0.09 hip centre 0.06 spine 0.09
left elbow 0.02 right elbow 0.35 left foot 0.55 right foot 0.65
left hand 0.12 right hand 0.13 left hip 0.27 right hip 0.35
left knee 0.03 right knee 0.03 left wrist 0.06 right wrist 0.24

As we can see, for some clusters the variation is minimal, thus
we can assume these to act as rigid bodies, while others, such as
the feet or hand markers, have a high empirical standard deviation
relative to the respective empirical mean. It is important to remark
that this outcome could have been influenced by possible measure-
ment errors while the data were being recorded. The markers on
the extremities of the body could have been displaced from their
original positions, since these moved a lot as the participants per-
formed the movements. As such, we ignore this variation for the
extremities of the body, and assume these to also act as rigid bodies.

3.3 Movement Features
With respect to [1, 2], here we consider a larger number of move-
ment features (only speed was considered therein). In this way, it
is possible to compare the results obtained using different features.

Speed. We are currently using at each joint several movement fea-
tures and estimating their effectiveness in determining the origin
of movement in a given frame. The first of these features consid-
ered is speed (i.e., the magnitude of the tangential velocity), which
was also used in [1, 2], allowing a direct comparison with existing
research. We calculate this speed as the norm of the velocity vector
(exploiting the np.linalg.norm method in Python).

Tangential Acceleration. The second movement feature we consider
is tangential acceleration (i.e., the derivative of speed).

Angular Momentum. Another movement feature we consider is
angular momentum. Let us consider a possible scenario in which
we have a movement where different parts of the body are rotating
with respect to different axes passing through the centre of mass of
the body. In order for these segments to have the same (or similar)
direction of the angular momentum, they would have to be rotating
together. The aim here is to find clusters of joints with similar direc-
tion of angular momentum. In this case, as a measure of similarity
of this feature, we are currently considering Cosine Similarity. We
calculate the Cosine Similarity between any two adjacent nodes,
e.g., between hand and wrist. By doing this, it is possible to com-
pare the directions of the angular momenta associated with the two
nodes, and thus evaluate if two nodes are associated with (nearly)
the same direction.

However, Cosine Similarity is just a measure of similarity, and it
can be also negative, having the range [−1, 1]. In order to apply the
game-theoretical framework proposed in [1] to a generic movement
feature, we need both a non-negative dissimilarity measure and a

non-negative similarity measure, since both are used to define the
utility of each coalition (details are in [1]). We are currently dealing
with this issue by just adding 1 to the Cosine Similarity. Hence,
pairs of nodes that have nearly the same direction of the angular
momentum will have a “corrected” Cosine Similarity close to 2.

4 ONLINE ANNOTATION TOOL
At this stage, we have developed an online tool that will be used
to acquire annotations on our dataset from both experts and non-
experts. The participants view each video from our dataset and se-
lect what they believe to be the leading joint. We have also extended
the original online tool presented in [2], so that the participants can
select also a second leading joint. In order to compare the results of
the analysis with the ground truth provided by the participants, we
consider the two joints with the largest Shapley value(s), not only
a single joint with the largest Shapley value. This is because, as
shown in [2], it sometimes occurs that there are two nodes with the
largest Shapley value (or one with the largest Shapley value, and
the second one with a nearly identical Shapley value), and these
nodes are typically connected by an edge in the graph.

As a result, by using this approach of having the participants
choose what they believe to be the origin of movement, we reach
a sort of ground truth that possibly changes from participant to
participant. Finding several frames in a recording for which the
inter-participant agreement is strong suggests that in these frames
there is a clear perception of the origin of movement.

5 RESULTS
Thus far, results of our analysis are in a preliminary phase, as we
have not yet concluded their validation via the online annotation
tool. The main analysis will come from examining the results of the
survey, arriving at a ground truth and extracting relevant frames
from this.

However, there are some initial results we can describe at this
point. As stated before, the dataset consists of videos accompanied
by annotations on the movements performed. These primary expert
annotations can be used, on a given fragment of a video, to measure
the accuracy (in percentage) of a movement feature in predicting
the perceived origin of movement. These initial expert annotations
comprise the perceived origin of movement for each fragment,
which can be compared, e.g., to the one predicted by considering
the two (adjacent) joints with the two largest Shapley values.

For each fragment, manual annotations of the origin of move-
ment were recorded. Using the MATLAB code we have developed,
for each fragment and for each frame, we obtained the joints with
the 10 largest (possibly repeated) Shapley values. In other words,
we used a specific movement feature in combination with the index
(1st, 2nd, and so on) of the Shapley value in order to determine
the accuracy of that feature in predicting the origin of movement.
However, as we were not interested in all 10 joints, we focused our
attention on the top two joints.

Hence, we can compare the perceived origin of movement from
the manual annotations to the origin of movement predicted by a
certain movement feature. This comparison is performed in three
ways. First of all, we compare the ground truth against a random
choice. This is to create a base case, as we expect that our results
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yield better accuracy than the random choice. We also assume that
in the case of the random choice, the accuracy will be approximately
5% since 20 joints are considered in total.

The second comparison is between the ground truth coming
from the manual annotations against the joint with the largest
Shapley value. Thirdly, we compare the joints with the first and
second Shapley values to the perceived origins of movement and
we obtain an accuracy score, conditioned on the difference between
the first and second Shapley values being less than 0.05.

As an example, Table 2 shows the results of this comparison for
a specific fragment in our dataset, based on all movement features.

Table 2: Summary of results for a single fragment

Fragment t_028.3 Speed Acceleration Ang. Momentum
Random Choice 5.81% 5.44% 5.43%

First Largest Shapley Value 19.42% 13.07% 19.61%
First & Second Largest Shapley Values 80.36% 51.18% 50.89%

Table 2 details, for a specific fragment (t_028.3), and for each of
the three movement features considered in this work, the results
of the comparison between the labeled perceived origin of move-
ment and its prediction obtained using each of the three methods
described above (random choice, first largest Shapley value, first
and second largest Shapley values). We can see, as expected, that
the application of the random choice method yields a low accuracy
score, close to 5% for all the movement features. From the table, we
can also see that speed produces a rather good accuracy score for
the third comparison. Indeed, overall the third comparison yields
better results as it uses a more relaxed matching between Shapley
values and ground truth. Thus, we can deduce that speed seems
to be a somewhat good determinant for the perceived origin of
movement, while there is still room for improvement for the other
two features. However, one has to take into account that these
conclusions hold only for one specific fragment, hence it is not
currently possible to extend them to other fragments.

These results, while they can give us an initial idea of the per-
formance of each movement feature, do not tell us much about the
relevance of certain frames. Also, the annotations which comprise
the perceived origins of movement were made by only one human,
so are bound to produce incomplete and preliminary results.

6 ONGOING AND FUTUREWORK
Amain focus is on the refinement of the origin of movement concept,
as a foundation for the design of a rich multi-modal repository of
movement qualities.

Further discussions with choreographers and other movement
experts are leading to an improved model of this quality.

In particular, a refinement of the concept of origin of movement
is the following Origin of Movement Continuum model. We define
two different types of origin of movement (external and internal)
as boundaries of this continuum, as follows:

(i) External: a joint that continuously leads the movement for
a time interval, and maintains the energy in this joint. All other
joints follow, which causes the movement of the surrounding joints.
An example is a full-body movement where the hand is drawing a
shape in the surrounding personal space. As a result, the energy at
this joint is maintained with the other adjacent joints following, and

the hand is the evident origin of movement. An origin of movement
of this type may be clear to perceive, and changes across the body
from one joint to another is most often clearly visible to an observer.

(ii) Internal: on the other boundary of the continuum, the origin
of movement can be thought of a sudden “sparkle of energy” origi-
nating at a single joint. An example is a sudden right hip tangential
acceleration that causes a propagation of a spiral movement in the
body. This sort of “gush“ emerging from the body then propagates
to the surrounding joints. This second type of origin of movement
is therefore hardly predictable. It may have no obvious prepara-
tion movement, it may not be explicitly communicating, and may
emerge from an intimate, inner behavior. An observer perceives
this internal origin of movement as a sudden source of energy that
starts from a joint and propagates in the body.

We are currently working at the creation of a rich repository
of different cases of origin of movement. This implies the creation
of a repository including a taxonomy of movements, to help in
solidifying the proposed continuum model, but also to support
further research activities as it can be used as a core element to
construct a protocol for multimodal recordings. In essence, we aim
to design a taxonomy capturing the quality of movement that will
be useful for the validation and evaluation of the computational
model investigated.

There are several ways to structure this taxonomy of movements:
in terms of the body parts involved; in terms of proximal to distal
movements; in terms of specific actions that are asked to the per-
former. These research questions will be faced in future activities
of the EnTimeMent project.

Possible future extensions of this research include how multiple
temporal scales can be incorporated. For example, we could look
at a fast temporal scale at the very first moment of the origin of
movement, and also at a slower temporal scale where we could
analyse the origin of movement at a higher level. Thus, multiple
temporal scales would be useful in prediction and analysis, resulting
in higher level analyses.

Finally, another extension considers small groups of people and
examines the emergence of the origin of movement in groups. In
this case, a group would be considered as a single organism. Thus,
in the context of graph and game theory, instead of considering
joints as players, we would use similar techniques at a higher level,
that of the individuals (and not the joints), and analyse the concept
of origin of movement in terms of leadership in a team.
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