The Multi-Event-Class Synchronization (MECS) Algorithm

G. Volpe, P. Alborno, M. Mancini, R. Niewiadomski, S. Piana, A. Camurri

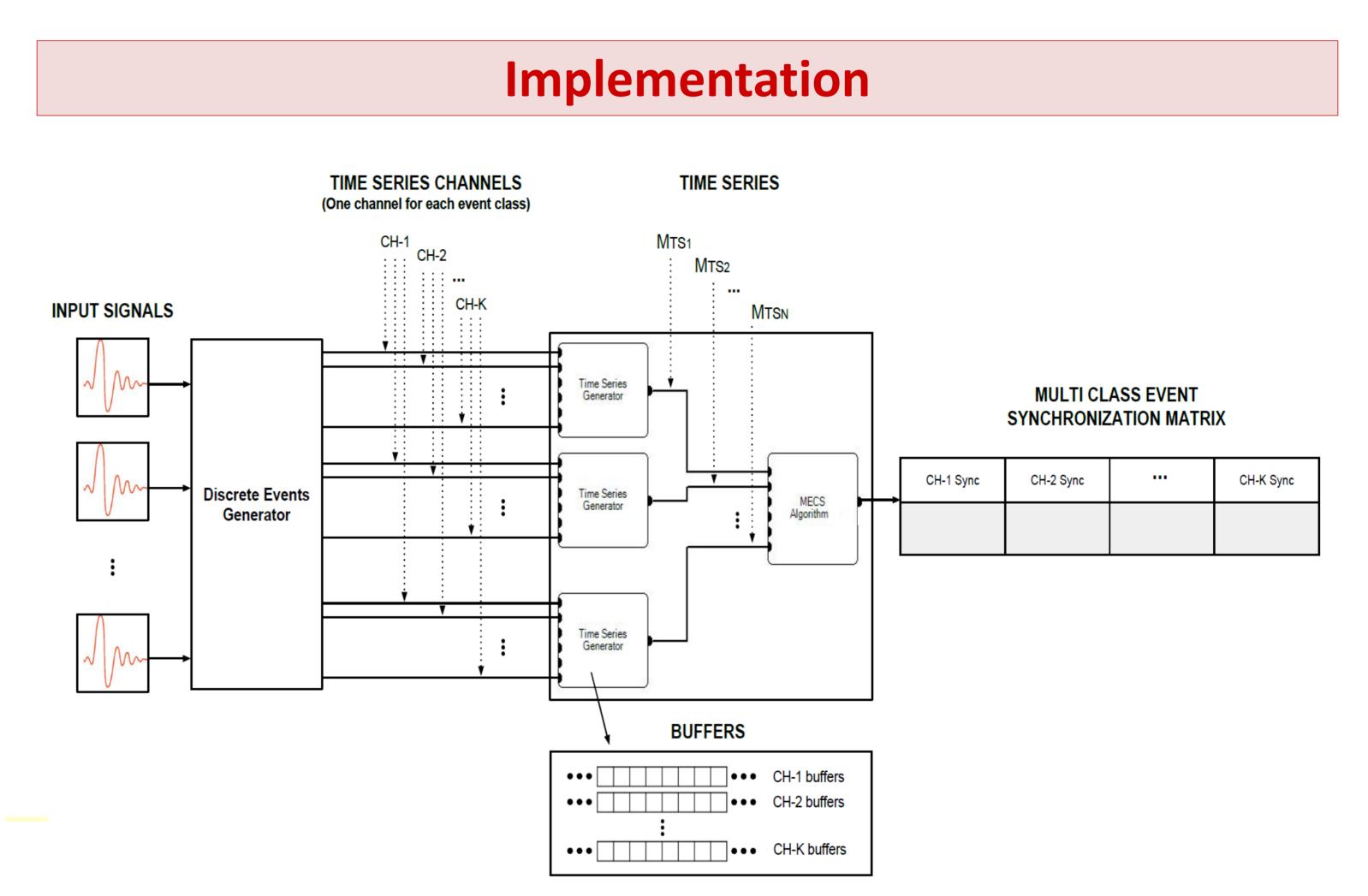
www.casapaganini.org

Background

- Event Synchronization (ES) measures synchronization and time-delay patterns between events occurring in a collection of time series.
- *Events* consist of the detection of significant behaviors of the system under observation.
- ES was initially proposed by Quian Quiroga et al. (2002)

Macro classes and macro events

- Classes can be grouped into *macro classes*. MECS considers each item of the classes composing a macro class as belonging to the same class.
- Events can be grouped into macro events, i.e., specific aggregations of events defined by a set of constraints. An example of a macro-event is a *sequence of events*,


who applied it to two time series.

• The technique was originally developed to study brain signals, but it found applications in other domains, including human-machine interaction, analysis of group dynamics, and inter/intra-personal coordination.

Objective

- Extending existing ES techniques, by enabling:
 - Multiple time-series
 - Multiple classes of events
 - Macro events
 - Macro classes

where the constraint to be satisfied is the order of occurrence of each event in the sequence.

Reference	Number of		Macro	
	time series	classes	events	classes
Quian Quiroga et al., 2002	2	1	Not handled	Not handled
Iqbal and Riek, 2016	Μ	Ν	Not handled	Not handled
Kreuz et al., 2009	Μ	1	Not handled	Not handled
MECS	Μ	Ν	Handled	Handled

Algorithm

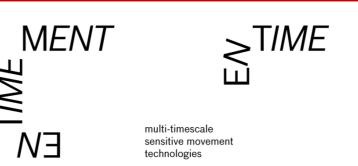
- Given a collection of time series and events belonging to different classes, MECS computes:
 - Synchronization within each class of events (*intra-class synchronization*).
 - Synchronization between classes of events (*inter-class synchronization*).
 - A global synchronization index for all classes. -
- The computation consists of two steps:

An implementation of MECS is available in EyesWeb.

Example

- Multi-modal intra-personal synchronization between respiration and kinetic energy of a professional dancer performing impulsive vs. fluid body movements.
- *Data*: audio of the respiration (microphone) and acceleration of the hands (accelerometers).
- *Events*: peaks of respiration energy and kinetic energy.
- Results:
 - *Impulsive movements*: synchronization scores are similar for inspiration (0.58) and expiration (0.65).
 - *Fluid movements*: only few synchronized events

- The algorithm detects coincidences of events in two different time series and in a specific time interval (*coincidence detection*) and counts them.
- The number of detected coincidences is normalized with respect to the total number of possible coincidences (*normalization*).


observed for inspiration (0.12) and expiration (0.04).

References

- Tariq Iqbal and Laurel D. Riek. 2016. A Method for Automatic Detection of Psychomotor Entrainment. IEEE Transactions on Affective Computing 7, 1, 3–16.
- Thomas Kreuz, Daniel Chicharro, Ralph G. Andrzejak, Julie S Haas, and Henry DI Abarbanel. 2009. Measuring multiple spike train synchrony. Journal of neuroscience methods 183, 2, 287–299.
- Rodrigo Quian Quiroga, Thomas Kreuz, and Peter Grassberger. 2002. Event synchronization: a simple and fast method to measure synchronicity and time delay patterns. Physical review E 66, 4, 041904.

MEN

This research has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n. 824160 (EnTimeMent).