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Multi-layer adaptation of group 
coordination in musical ensembles
Pauline M. Hilt   1, Leonardo Badino1, Alessandro D’Ausilio1,2, Gualtiero Volpe3, Serâ Tokay4, 
Luciano Fadiga1,2 & Antonio Camurri3

Group coordination passes through an efficient integration of multimodal sources of information. 
This study examines complex non-verbal communication by recording movement kinematics from 
conductors and two sections of violinists of an orchestra adapting to a perturbation affecting their 
normal pattern of sensorimotor communication (rotation of half a turn of the first violinists’ section). 
We show that different coordination signals are channeled through ancillary (head kinematics) and 
instrumental movements (bow kinematics). Each one of them affect coordination either at the inter-
group or intra-group levels, therefore tapping into different modes of cooperation: complementary 
versus imitative coordination. Our study suggests that the co-regulation of group behavior is based on 
the exchange of information across several layers, each one of them tuned to carry specific coordinative 
signals. Multi-layer sensorimotor communication may be the key musicians and, more generally 
humans, use to flexibly communicate between each other in interactive sensorimotor tasks.

Successful human-to-human interaction requires important behavioral adaptation, as well as prediction. A 
large body of literature has focused on cooperation towards shared goals, where humans must combine availa-
ble sensory information with internal movement production models1–4. In this regard, researchers investigated 
how dyads achieve interpersonal simple sensorimotor coordination, such as walking side-by-side5 or rocking in 
rocking-chairs6. In such contexts, co-actors continuously influence each other and tend to spatially and tempo-
rally synchronize their movements. Beside imitation, action complementarity play a key role in inter-individual 
coordination with the goal of achieving efficient collaboration7. Social interaction indeed goes beyond syn-
chronization with other’s actions and relies also on inferring others’ motor goals and intentions to generate a 
context-appropriate action. To achieve fast inter-individual coordination, individuals may build internal predic-
tive models of other’s behavior. In function of the context, the most appropriate motor model is compared with 
the current observed movement, to generate a prediction error4 and update own motor planning8.

Due to the technical and analytical complexity in exploring the details of human sensorimotor interaction, 
only few experiments went further than a dyadic set-up9–12. However, in daily life, things are usually much more 
complex. For instance, during a conversation, information is sampled through multiple channels (e.g. vision, 
audition), sometimes in parallel (e.g. information in the foreground and information from the background) and 
at different temporo-spatial scales (e.g. slow whole-body movements versus fast lip motions). At the same time, 
different kinds of information may be conveyed in parallel through different channels. For example, in speech, 
bodily gestures and spoken words are generally co-expressive13. In this context, communication requires flexible 
means to integrate multimodal data, across multiple timescales and act accordingly. Therefore, proper quantifica-
tion of (realistic) group coordination is today one of the key missing elements to understand how humans manage 
to interact with others by efficiently selecting, processing and sending information.

In this context, ensemble musicians have been proposed as an ideal model, by keeping the key multidimen-
sional properties of natural sensorimotor interaction, but allowing relatively good experimental control14,15. 
Few previous studies, by relying on kinematic recordings, have started to model sensorimotor information 
flows across musicians. D’Ausilio and collaborators16 recorded violinists’ and conductors’ movement kinematics 
to investigate causal relationships across musicians. They showed that conductors influenced communication 
between musicians and that aesthetic appreciation was dependent on the co-regulation of leader-to-musician 
and musician-to-musician communication patterns16. Leadership in the orchestra scenario is explicit since the 
conductor determines tempo, selects musicians, leads rehearsals, and takes critical decision about interpretation 
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of the pieces. For instance, visual cues derived from conductors’ gestures improve temporal anticipation and syn-
chronization performance for individuals with or without musical training17. In the absence of explicit leadership 
(e.g. quartet), this role is shared across musicians18. The quartet scenario was also used by Chang and collabo-
rators19 to investigate the leader-follower relation during a manipulation of the visual information available to 
musicians: musicians faced 180 degrees away from the center (to prevent direct visual contact with each other). 
They found a general decrease of communication across quartet members when they could not see each other, 
confirming that information flow is affected by a change in the available information. Extending these findings, 
Chang and colleagues20 quantified the intentionality of emotional expression using body sway kinematics of 
quartet musicians and Granger-Causality tools.

Beyond global descriptions of musician’s pattern of relationships, the complexity of these kinds of scenario 
could also be exploited to distinguish and evaluate the existence of multiple channels of communication as well 
as their respective role in efficient coordination. In previous studies, one representative kinematic parameter 
was used to extract global coordination16,18–20. However, we know that movements of different body parts may 
convey substantially different types of information. For instance, bow movements in violinists directly control 
the sound output (i.e., instrumental gestures), whereas complementary torso oscillations may serve a secondary 
communicative purpose (ancillary gestures)15,21. More importantly, movements of different body parts may act 
as different channels of communication, possibly with different roles depending on the specific communication 
mode. For example, within a quartet18–20, musicians have specific roles while in orchestras, musicians generally 
play in distinct sections (e.g. sections of violinists). This means that in the orchestra scenario, different modes of 
communication coexist: a complementary coordination with the conductor and other musicians, in parallel with 
an imitative coordination with musicians of the same group (playing the same score).

In the present study, we aim at answering two scientific questions: whether different channels of communi-
cation exist and whether they carry different information across modes of communication. We had a chamber 
orchestra playing music while we recorded bow and head kinematics (instrumental and ancillary movements) 
of a first and second section of violinists (four violinists in each section) as well as the arm and head kinemat-
ics of two different conductors. In one experimental condition we applied a perturbation to the orchestra sen-
sorimotor information flow. The perturbation consisted in half-turn rotation of the first section of violinists 
so that they faced the second section and couldn’t see the conductor anymore. This perturbation modifies the 
perceptuo-motor context of the first section of violinists, placing also the second section and the conductor into a 
novel playing situation. By doing so, we analyzed inter-group complementary coordination as well as intra-group 
imitative coordination (modes of communication), through different channels of communication (instrumental 
and ancillary movements) during different playing situations (normal and perturbed).

Based on this experimental manipulation and, due to the new central role played by the second section (facing 
conductor and first section), we hypothesize a general increase of the influence of the second section on other 
musicians and conductor. At the same time, ensemble music playing require the co-regulation of the different 
modes of communication (e.g. cooperative/competitive)22 and adjustments in inter-group communication may 
be balanced by changes at the intra-group level. For instance, the additional efforts spent by the second section on 
inter-group communication may be at the expenses of intra-group coordination. We thus predict a decrease in 
the second section intra-group imitative coordination to focus on the communication with the first section and 
conductor. On the contrary, the first section may need to rely more on his own as would be shown by an increase 
intra-group imitative coordination. Finally, we predict that the two channels convey information that is differen-
tially modulated across groups, modes and conditions. Specifically, information channeled through instrumental 
movements should be more robust to perturbations because they reflect overlearned patterns, which more closely 
relate to what is still available on the score. For this reason, we predict that bow movements may be less affected 
by the perturbation than the ancillary channel.

Method
Subjects.  A chamber orchestra consisting of 8 violinists (2 sections of four violinists: S1 and S2) and 10 
instrumentalists participated in the study along with two professional conductors (C1 and C2). Data were col-
lected from the two violinists’ sections and conductors. Each violinists section counted four players. The study 
was approved by the SIEMPRE Project Management Committee and adhered to the standards laid down in the 
Declaration of Helsinki. All participants gave written informed consent before participating. The synchronized 
multimodal recordings of the musicians obtained for this experiment as well as the details of the SIEMPRE plat-
form for multimodal recordings are made available to the research community from the EU ICT FET SIEMPRE 
web pages (http://www.siempre.infomus.org).

Procedure.  The two conductors and the orchestra executed two pieces of music selected from their repertoire 
so that their performance could already be at plateau and thus showing no learning during the experiment. The 
music pieces were excerpts from the ouverture of “Signor Bruschino” by Rossini and the Vivaldiana, terzo movi-
mento by Malipiero (lasting around five minutes each). Two experimental conditions were tested (Fig. 1A), which 
only differ by the way one section (henceforth, first section, S1) interacts with the conductor and the other section 
(henceforth, second section, S2). In one condition (normal condition, Norm; Fig. 1 in blue), S1 violinists - lined in 
a single row - were able to see C, but not S2 violinists. This condition kept the standard position of the musicians. 
In the second condition (perturbed condition; Fig. 1 in red) S1 violinists - still lined in a single row - were able 
to see S2 violinists, but not C (since they were facing backwards with respect to him). This condition altered the 
standard position of the musicians. We decided to perturb S1 orientation to act on the strongest relationship (S1 - 
Conductor) and elicit a significant re-adaptation of the whole orchestra dynamics. By doing so, we could highlight 
the co-regulation of the different modes of communication, across different channels of communication. The two 
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pieces were repeated six times (three times with C1 and three other times with C2) in each experimental condi-
tion (normal versus perturbed). In total, 24 trials were recorded.

Apparatus and set-up.  Movement data were collected (1000 Hz) by using a Qualisys motion capture sys-
tem equipped with 7 cameras, integrated with the EyesWeb XMI platform: http://www.infomus.org/eyesweb_ita.
php 23, including audio and physiological signals (not used here). Each violinist was equipped with a cap on which 
were placed three passive markers of the Qualisys motion capture system. The positions, based upon the 10–20 
electroencephalographic system, corresponded to Pz, F3 and F4. Before starting recording sessions, we ensured 
that the cap was not moving with musicians’ movements and facial expressions. An average of these three mark-
ers was taken for further analysis on head movement, to minimize loss of data and interpolation. An additional 
marker was placed on the bows of the players and on the baton of the conductors. After data tracking by using the 
Qualysis Track Manager software, the data was exported and analyzed in MATLAB.

Data pre-processing and analysis.  Data pre-processing.  We first used the spline method to han-
dle the missing data in the 3D trajectories. The spline method interpolates missing data with continuous third 
order derivatives. We then computed the magnitude of the acceleration from each 3D trajectory (as done in)16. 
Acceleration was chosen because it should be more informative than trajectory and velocity, especially for what 
regards expressive information transfer. This claim is backed by studies on visuo-motor coordination suggesting 
that a marked deceleration towards the endpoint of a moving object’s trajectory provides more saliency to the 
timing of this endpoint, and facilitates synchronization with that object24,25. Each musician time-series on each 
trial was normalized (to z-scores) and outliers (>6std) were set as absent values (NaN) and interpolated when the 
gap was smaller than 200 frames (i.e. 2 sec). The total percentage of interpolated data was: 4.7% (±1.6).

In the following, we made an empirical dissociation between two modes of communications. We considered 
as intra-group imitative coordination, the relation between musicians playing the same score. Due to common 
score, these musicians are engaged in a joint behavior requiring an important degree of imitative coordination. 
In parallel, we named inter-group complementary coordination, the relation between musicians having different 
scores, and thus being engaged in a joint behavior requiring an important degree of movement complementarity.

Intra-section imitative coordination Principal Component Analysis.  To evaluate the level of imitative coordi-
nation between violinists’ movements of each section of violinists (playing the same score), we used a principal 
component analysis (PCA)26. PCA is a standard statistical technique generally used to extract a low-dimensional 
structure from a high-dimensional dataset. Dimensionality reduction method are classically used in the motor 

Figure 1.  Orchestra musicians’ position and associated computations. The section in the middle represents the 
respective position of musicians in the orchestra: conductor (C), first section of violinists (S1; 4 violinists: V1, 
V2, V3 and V4) and second section of violinists (S2; 4 violinists: V5, V6, V7 and V8). In the normal condition 
(Norm; blue), S1 faces the conductor. In the perturbed condition (Pert; red), S1 rotates 180° facing S2. For 
each participant we recorded head (black dot) and bow (grey dot) kinematics. We extracted the pattern of 
communication at the group-level (between S1, S2 and C) using conditional Granger Causality (G) as shown 
in the top of the figure. Additionally, intra-group coordination, as described in the lower part of the figure, was 
computed via principal component analysis (%PC1) and an index of predictability of the conductor behavior 
(using the goodness of fit of the associated auto-regressive model; ARfit).
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synergies field to extract invariant/similar features across time between muscle or kinematic parameters. In par-
ticular, PCA has been used to characterize the degree of covariance across time of different body segments in 
whole-body movements (e.g. locomotion27; reaching)28. Here, PCA was performed on the acceleration profiles of 
the four violinists of each section (Fig. 1, lower panel), windowed and pre-processed in the same way as Granger 
Causality analysis. Mathematically, the method involves the eigenvalue decomposition of a dataset covariance 
matrix in order to find the principal directions in the high-dimensional space. For each of the windows, we con-
sidered an input matrix composed of 300 rows (temporal frames) and 4 columns (the acceleration profiles of the 
four violinists in each section) to which we applied the Matlab princomp function, after a zscore normalization 
of the input matrix. The PCA gives four principal components (PC) each written as a linear combination of the 
initial waveforms (the four violinists’ acceleration profile). The variance accounted for (VAF) by the first principal 
component (noted PC1%) is defined as the ratio between the first eigenvalue and the sum of all the eigenvalues. 
The VAF represents the degree to which the linear combination associated to each PC is able to approximate the 
initial dataset. A high PC1% value means that the trajectory in the space of angles is close to a straight line (i.e., all 
angles were linearly correlated together) while, a low PC1% value indicates that one principal component is not 
sufficient to describe precisely the trajectories.

Conductor behavior predictability: auto-regressive model’s fitting.  Following sensorimotor communication lit-
erature (for a review)29, we evaluated conductor behavior predictability to verify whether intrinsic variability of 
conductor’s behavior was altered by our experimental manipulation. In cooperative joint action tasks, leaders 
tend to make their movements more consistent over time to help their partner build a predictive model of oth-
er’s action. An increase in the predictability of (Partner) A translates into a smaller uncertainty when (Partner) 
B needs to predict future signals coming from A to plan the most appropriate action. We evaluated the level of 
predictability of conductors’ behavior (Fig. 1, lower panel) as goodness of fit of the linear autoregressive model 
computed on the conductor acceleration profile extracted from bow and head data separately. We modelled the 
conductor acceleration profile via a linear autoregressive model in the same way we computed it for Granger 
Causality analysis and on the same sliding windows parameters. The optimal order of the model was determined 
via the Akaike’s information criterion and the goodness-of-fit (ARfit) was measured as the sum of squares of the 
residuals, for each sliding window.

Inter-group complementary coordination: Granger causality analysis.  Granger causality analysis was then carried 
out on the preprocessed acceleration waveforms. According to Granger formalism, a signal X Granger-causes (or 
G-causes) a signal Y if the past values of X contains information that helps predict Y above and beyond the infor-
mation contained in the past values of Y alone. Thus, a Granger-causality score (gca) was defined between each 
pair of musicians as the log-likelihood ratio of the degree to which the prior time series of a musician X (causing 
variable) contributes to predict the current status of a musician Y (dependent variable), over and above the degree 
to which it is predicted by its own prior time series while conditional on the remaining musicians time-series 
(conditional variables).

In our experimental context, the interaction of more than two time series was addressed. In this case, repeated 
pair-wise Granger causality computations can lead to misleading results. To avoid that, we used a simple exten-
sion of Granger causality, referred to as Conditional Granger causality30. Suppose we have three time series X, 
Y and Z, then the Conditional Granger causality from Y to X given Z is defined as the log ratio of the error var-
iance of the restricted model where only Y is excluded from the history (when modeling X) and the variance of 
the unrestricted model, where the history of all time-series X, Y and Z is included. The use of conditional allow 
to take into account the influence of musicians out of the tested pair to avoid misinterpretation due to multiple 
sources of information16,19.

More details on Granger computation are reported in Supplementary Material.
Gca was evaluated (pairwise), every 500 milliseconds on 3-s sliding windows using the “Granger Causality 

connectivity analysis” Matlab toolbox31. Windows containing more than one third (i.e. 166 ms) of absent values 
were not used in the analysis (less than 5% of the total windows number). The Granger Causality computation is 
similar to the one used in16,18. From this point, we will represent gca of X on Y by the notations GX->Y or X- > Y.

We were interested in the causality relations between the conductor and each section of violinists (S1 and S2). 
This analysis is illustrated in Fig. 1 (upper panel). We performed three different types of Conditional Granger 
causality computations: (1) Causality between each conductor and violinists of S1 (taken separately): defining as 
causing variable the conductor, as dependent variable each S1 violinist separately and the other way around [con-
ditional variable: musicians in S2 - taken separately]. (2) Causality between each conductor and violinists of S2 
(taken separately): defining as causing variable the conductor, as dependent variable each S2 violinist separately 
and the other way around [conditional variable: musicians in S1 - taken separately]. (3) Causality between the 
violinists of S1 and S2 (taken separately): defining as causing variable each S1 violinist separately, as dependent 
variable S2 violinists separately and the other way around [conditional variable: the conductor]. In these three 
analyses, we computed gca between each pair of musicians on each 3 s window. When the causality between the 
two variables was significant, we kept the gca value otherwise this value was set to 0. Finally, gca values were 
averaged across conditional variables, conductors and musicians of same section, to get one value per group 
(i.e. C- > S1, S1- > C, C- > S2, S2- > C, S1- > S2, S2- > S1). Thus, for each experimental condition, the output 
matrix consisted of 6 columns (the number of causal relation) and thousands of lines (the number of considered 
windows).

Statistical analyses.  Inter-group and intra-group data did not follow a normal distribution according to 
normality tests (Kolmogorov–Smirnov) and the variances were also not homogeneous according to statistical 
tests (Levene). We, therefore, used a two-tail independent samples Welch’s t-test (already used on same type of 
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data in)18. In the Welch’s t-test the assumption of normality is not critical for large samples32 as it is the case for 
our data set. More importantly, Welch developed an approximation method for comparing the means of two 
independent populations when their variances are not necessarily equal33. Because Welch’s modified t-test is not 
derived under the assumption of equal variances, it allows the comparison of two populations without first having 
to test for equality of variance.

Based on the data extracted in “intra-section imitative coordination”, we made four comparisons for each 
kinematic parameter: %PC1S1 NORM vs %PC1S1 PERT, %PC1S2 NORM vs %PC1S2 PERT, %PC1S1 NORM vs %PC1S2 NORM, 
%PC1S1 PERT vs %PC1S2 PERT. For “conductor behavior predictability” we compared for each kinematic parameter: 
ARfit NORM vs ARfit PERT.

Based on the data extracted in the “inter group complementary coordination”, we made three different set 
of comparisons, repeated twice (once for head data, once for bow data). (1) For the normal condition, we ran 5 
comparisons: C- > S1 vs S1- > C, C- > S2 vs S2- > C, S1- > S2 vs S2- > S1, C- > S1 vs C- > S2, S1- > C vs S2- > C. 
The other possible comparisons were not performed because they were not informative for the study (e.g. C- > S1 
vs S2- > C) or comparing elements of different nature (e.g. C- > S1 vs S2- > S1). (2) For the perturbed condition, 
we ran the same 5 comparisons as in (1). (3) Across the two experimental conditions, we ran 6 comparisons: 
C- > S1NORM vs C- > S1PERT, C- > S2NORM vs C- > S2PERT, S1- > CNORM vs S1- > CPERT, S2- > CNORM vs S2- > CPERT, 
S1- > S2NORM vs S1- > S2PERT, S2- > S1NORM vs S2- > S1PERT.

In all these analyses, the p-level was corrected for multiple comparisons with the Benjamini and Hochberg 
false discovery rate procedure. We reported in the results part the corrected p-value, and the value of the test sta-
tistic. We considered as marginally significant the statistical comparison for which the p-value before correction 
was inferior to 0.05. All analyses were conducted using the Matlab Statistics toolbox (Mathworks Inc.).

Results
Intra-section imitative coordination (Principal component analysis).  Bow data.  The %PC1 
increased from Norm to Pert for S1 (Fig. 2B, left panel; p < 0.01; t = −3.22) while decreased for S2 (p < 0.001; 
t = 4.03). In addition, %PC1 was larger for S1 compared to S2 in the two experimental conditions (Norm: 
p < 0.001; t = 7.11; Pert: p < 0.001; t = 12.97).

Head data.  A similar pattern of results was found for head data. The %PC1 increased from Norm to Pert for 
S1 (Fig. 2B, right panel; p < 0.001; t = −5.35) while decreased for S2 (p < 0.01; t = 3.25). In addition, %PC1 was 
larger for S1 compared to S2 in the two experimental conditions (Norm: p < 0.001; t = 4.42; DoF = 5450; Pert: 
p < 0.001; t = 12.03). An illustrated version of these results is presented in Fig. 3.

Conductor behavior predictability (auto-regressive model’s fitting).  Bow data.  The goodness of 
fit of the autoregressive model for the bow data was not different in the two conditions Norm and Pert (p = 0.81; 
t: 0.25; Fig. 2A).

Head data.  The goodness of fit of the autoregressive model for the head data was significantly smaller in Norm 
compared to Pert (p < 0.001; t = −14.95; Fig. 2A). An illustrated version of these results is presented in Fig. 3.

Figure 2.  (A) Predictability of the conductor behavior (ARfit). The autoregressive model was computed on 
the conductors, from bow and head data separately for the two experimental conditions normal (black) and 
perturbed (white). (B) Intra-section synchronization as indexed by the percentage of reconstruction of the first 
principal component (%PC1). PCA analysis was run on bow (middle panel) and head (right panel) acceleration 
profiles of the four violinists of each section (S1 and S2). Statistical differences are represented by black lines on 
the top of each histogram.
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Inter-group complementary coordination (Granger causality analysis).  Bow data.  (1) In the nor-
mal condition, C G-caused S1 and S2 more than the other way around (Fig. 4A, left panel; C < - > S1: p < 0.001, 
t = 6.08; C < - > S2: p < 0.001, t = 4.34). The gca of S1 on S2 was larger than the gca of S2 on S1 (p < 0.05, t = 2.63). 
No other significant differences appeared in Norm. (2) The pattern was the same in the perturbed condition 
(Fig. 4A, right panel). C G-caused S1 and S2 more than the other way around (C < - > S1: p < 0.001, t = 11.55; 
C < - > S2: p < 0.001, t = 6.72). The gca of S1 on S2 was larger than the gca of S2 on S1 (p < 0.01; t = 3.31). In 
addition, the gca of S1 on the conductor was significantly smaller than the gca of S2 on the conductor (p < 0.01, 
t = −3.17). No other significant differences appeared in Perturbed. (3) A significant decrease from Norm to Pert 
appeared in the gca of S1 on C (p < 0.05, t = 2.73). We found no additional significant change between the two 
conditions (Fig. 4A, lower blue rectangle).

Head data.  (1) In the normal condition, no significant difference appeared between the gca of C on S1 and S2 
compared to the inverse relation (Fig. 4B, left panel; C < - > S1: p = 0.29; C < - > S2: p = 0.40). A significant differ-
ence was found between the gca of S1 on S2 and S2 on S1: GS1->S2 being higher than GS2->S1 (p < 0.001; t = 3.72). In 

Figure 3.  Schematic representation of the main results for intra-group analysis. Results associated to the two 
channels, bow and head, are displayed respectively in the upper and lower panel. Circular arrows displayed 
in the left panel represent the strength of conductor predictability (ARfit). Middle and right panels represent 
the intra-group synchronization’s (%PC1) for both sections of violinists. Thickness of the arrow represent the 
strength of the effect in each experimental condition: normal (blue) and perturbed (red).

Figure 4.  Inter-group coordination (gca). Values extracted from Bow (A) and Head (B) acceleration profiles 
are shown for the normal (left side) and perturbed conditions (right side). Statistical differences within each 
condition are marked by colored lines on the top of each histogram. Statistical differences between conditions 
(Norm vs Pert) are represented by black lines under each histogram.
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addition, the gca of C on S1 was larger than C on S2 (p < 0.001; t = 3.69). No other significant difference appeared 
in Norm. (2) In the perturbed condition (Fig. 4B, right panel), C G-caused S1 significantly more than the inverse 
(p < 0.001; t = 5.64). In addition, the significant difference between the gca of S1 on S2 and S2 on S1 changed of 
direction compared to Norm: GS1->S2 being smaller than GS2->S1 (p < 0.01; t = −2.69). Additionally, the gca of S2 
on C was larger than the one of S1 on C (p < 0.001; t = −7.89). No other significant differences appeared in Pert. 
(3) Comparing the two experimental conditions (Fig. 4B, lower blue rectangle), we found a significant increase 
of GC->S2 (p < 0.001; t = −4.32) and GS2->C (p < 0.001; t = −3.87) and a significant decrease of GS1->C (p < 0.001; 
t = 6.47) and GS1->S2 (p < 0.001; t = 5.90) in Pert compared to Norm.

An illustrated version of these results is presented in Fig. 5.

Discussion
Social interaction requires mastering the integration of multimodal sources of information to achieve efficient 
interpersonal coordination. Behavioral adaptation and synchronization are fundamentally based on predictive 
mechanisms and on the ability to use previous experience and context to guide perceptual processes while inter-
action unfolds34. Recently, an important resurgence of interest has emerged towards the exploration of human 
cognition in its true context, which is fundamentally interactive35,36. Within this stream, ensemble musicians have 
been described as a powerful model to investigate complex non-verbal communication14,15.

The analysis of multi-agent kinematics via the Granger Causality method has shown important promise16. For 
instance, in orchestra, this method allowed the extraction of group-level information flow16 which is associated to 
the quality of the musical output. Furthermore, by applying perturbations to the communication flow in quartets, 
subsequent studies showed rapid ensemble adaptation to sensorimotor information exchange18,19. The present 
study tackled two scientific questions that had not been explored in previous experiments: whether different 
channels of communication exist (as mediated by ancillary Vs. instrumental movements) and whether they carry 
information that is critical for different modes of ensemble coordination (e.g. inter-group complementary and 
intra-group imitative coordination).

Regarding the different channels of communication, successful interaction generally requires that participants 
send and receive subtle messages in the form of various motor gestures. Musician’s movements can be separated 
into instrumental and ancillary. In violinists, upper limbs movements are directly linked to the production of 
music while head and trunk oscillation may carry additional information at the phrase level37,38. For instance, 
subjective evaluation of conductors’ face movements were rated higher in expressivity, whereas arms movements 
were judged higher in amount of musical information39. Notably, few studies could dissociate these different 
channels empirically in the context of a joint musical performance40.

Our results demonstrate that the pattern of sensorimotor information carried by two selected movements 
(head and bow) are distinct. Bow kinematics exhibit a robust leader-follower relationship between the conductor 

Figure 5.  Schematic representation of the main results for inter-group Granger-Causality analysis (i.e. inter-
group coordination) across the conductor (C) and the two sections of violinists (S1 and S2). Results associated 
to the two channels, bow and head, are displayed respectively in the upper and lower panel. Directional 
arrows illustrate inter-group coordination (C, S1 and S2), in the normal (blue) and perturbed (red) condition. 
Arrows thickness represents the interaction’s strength. A bidirectional arrow indicates similar gca values for 
the two directions (i.e. group 1 G-causes group 2, as much as group 2 G-causes group 1). On the opposite, a 
unidirectional arrow indicates the direction of the larger gca value (e.g. group 1 G-causes more group 2, than 
the inverse). To highlight the difference between the two conditions, we did not represent the arrow between C 
and S1.
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and the two violinists’ sections. This pattern is substantially not affected by the experimental manipulation of the 
sensorimotor information flow (perturbed condition) except for a decrease in communication between the first 
section and the conductor. The fact that the perturbation did not dramatically alter the information exchanged via 
instrumental movements suggests an important role of memory, score reading and residual sensory cues. Indeed, 
musicians train for several hours and may rely on rehearsal memory to cope with the perturbation, at least for 
what concern pure instrumental execution. At the same time, there is also a clear directionality of the information 
flow from conductor to musicians, which confirms the idea of a predominant role of the conductor in the group 
management41.

Ancillary movements, instead, are supposed to convey slower frequency signals possibly related to the 
expressive component of musical execution, which is more likely to be affected by perturbation of the interac-
tion dynamics. In fact, in head data, the perturbation produced clear alteration of the communication pattern. 
Communication between the first section and the conductor or the second section was reduced. At the same time, 
communication between the second section and the conductor increased in both directions. This global increase 
suggests a greater need for information exchange during the perturbation and considering that conductors and S2 
did not change their positions, we observe a quantitative but not a qualitative alteration of their communication. 
Instead, moving to the relationship between S1 and S2 we observe a complete reversal of their mutual commu-
nication. Before the perturbation, the first section provided larger causal drive towards the second section, while 
after, the second section lead the first. During the perturbation, the first section no longer had visual contact with 
the conductor, significantly reducing his role in leading orchestra dynamics. Even if we cannot exclude the con-
tribution of haptic, acoustic or residual visual information, the remaining influence that the conductor exert on 
S1, seems to be mediated by the new role played by S2. Although violinists of the second section did not actually 
change their position, they are the only ones establishing direct face-to-face communication with both first sec-
tion and conductor. Interestingly, they seem to increase their normal communication with conductors, while at 
the same time they dramatically change the way the communicate with S1. Correspondingly, our results suggest 
that S2 musicians were implicitly invested with far more centrality in orchestra coordination dynamics.

The distinct modulation of head versus bow kinematic parameters provides a demonstration of the multi-level 
complexity of musicians’ coordination. At the same time, another important aspect is related to the co-regulation 
of different modes of interaction. In our experimental context, each violinist must exchange information with 
other musicians of the same section (playing the same musical score – intra-group imitative coordination) and 
with other participants (playing different parts – inter-group complementary coordination). We used PCA to 
complement inter-group Gca analysis with an estimation of intra-section imitative coordination. Both kinematic 
parameters highlighted similar pattern of results. Due to the lack of communication with the conductor, the first 
section became more coordinated, in the probable attempt to maximize performance accuracy. On the contrary, 
the second section that was endowed with the central role of being the communication hub, reduced intra-group 
coordination. This may be driven by a need to gain the necessary degrees of freedom to lead communication with 
S1 and be the sole interlocutor of the conductor. Therefore, here we show that to modulate inter-group dynamics, 
S2 violinists had to penalize imitative coordination at the intra-group level.

Similar co-regulations of different modes of communication have already been described. For instance, a 
mixture of cooperative and competitive behaviors in choir singing22 and a balance between self-other integra-
tion and segregation in joint piano playing42 was shown earlier. In general, any complex human interaction may 
require a mixture of temporal coordination and imitation43 together with the coordination of complementary 
actions8. Although these two modes of interaction may naturally co-occur, it is difficult to explore them together 
in an experimentally controlled environment. Using the specificity of the orchestra scenario we explored here the 
interaction of intra-group dynamics (dominated by imitative coordinated behaviors) and inter-group dynamics 
(characterized by complementary action coordination).

Finally, we found an increase in conductor predictability following the perturbation, on head data only. 
Increasing behavioral predictability is a signaling strategy already described for leaders in dyadic interac-
tion29,44,45. In the musical domain, Wöllner and colleagues46 showed that musicians could better synchronize 
with a “morphed” virtual conductor (made by averaging the movements of multiple conductors) compared to 
individual conductors. Indeed, morphed conductor may provide a more prototypical example (with minimal 
noise), allowing a greater readability and thus facilitating temporal prediction. In this sense, greater behavioral 
consistency may be a key implicit coordination strategy to help musicians build a more reliable internal predictive 
model of the task and conductors’ movements.

In fact, internal predictive models, built through practice and previous experiences, may be essential in guid-
ing individual action into an efficient coordination with peers1,2,47,48. Behavioral predictions are confronted with 
sensorial feedbacks49,50 and may help to coordinate actions requiring fast and precise temporal coordination51, in 
which information can be sampled only intermittently. In professional musicians, extensive training may allow 
the construction of a detailed model of the piece and associated interactions. This model may, in turn, allow a 
good performance even in sub-optimal conditions, such as the one designed here. Indeed, extensive musical 
training has been associated with anatomo-functional changes52,53 paralleled by enhanced ability to discriminate 
subtle changes in others’ performance via predictive action simulation54,55.

In conclusion, our work highlights the multidimensionality of group coordination by evidencing different 
channels of communication (ancillary versus instrumental movements), affecting coordination at different levels 
(inter-group versus intra-group) tapping into different modes of cooperation (complementary versus imitative 
coordination). The co-regulation of these elements is the key musicians use to flexibly adapt to perturbation of the 
normal information flow and that is potentially shared with other non-musical complex ecological interaction.

Limitations.  It is important to note that the current study explored naturalistic behaviors at the cost of having 
less experimental control15. Due to the complexity of the data collection and the necessarily limited number of 
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times one can ask musicians to play the same piece, we decided to apply only one perturbation. Perturbing the 
strongest relationship (S1 - Conductor) allowed us to elicit a significant re-adaptation of the whole orchestra 
dynamics across the different modes and channels of communication. Future research will have to expand the 
current investigation along several directions. For instance, remains to be seen whether perturbing S2 produces 
similar important adaptation of orchestra dynamics. At the same time, the analysis of arm and head kinematics, 
although theoretically motivated15, provides only a relatively limited view about the complexity of group dynam-
ics. For instance, the inclusion of physiological signals such as electromyography, heart rate or galvanic skin 
responses may open to the affective dimension of music ensemble coordination.
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