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ABSTRACT 13 

A central issue in affective science is whether the brain represents the emotional expressions of 14 

faces, bodies and voices as abstract categories in which auditory and visual information converge 15 

in higher order conceptual and amodal representations. This study explores an alternative theory 16 

based on the hypothesis that under naturalistic conditions where affective signals are acted upon 17 

that rather than reflected upon, major emotion signals (face, body, voice) have sensory specific 18 

brain representations. During fMRI recordings, participants were presented naturalistic dynamic 19 

stimuli of emotions expressed in videos of either the face or the whole body, or voice fragments. 20 

To focus on automatic emotion processing and bypass explicit emotion cognition relying on 21 

conceptual processes, participants performed an unrelated target detection task presented in a 22 

different modality than the stimulus. Using multivariate analysis to asses neural activity patterns 23 

in response to emotion expressions in the different stimuli types, we show a distributed brain 24 

organization of affective signals in which distinct emotion signals are closely tied to the sensory 25 

origin. Our findings are consistent with the notion that under ecological conditions the various 26 

sensory emotion expressions have different functional roles, even when from an abstract 27 

conceptual vantage point they all exemplify the same emotion category.  28 

  29 
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INTRODUCTION 30 

In the course of daily social interactions, emotion signals from the face, voice and body 31 

are recognized effortlessly and responded to spontaneously when rapid adaptive actions are 32 

required. The specifics of the subjective experience in the natural environment determine which 33 

affective signal dominates and triggers the adaptive behavior. Rarely are the face, the whole 34 

body and the voice equally salient. That is, the actual conditions under which we react to an 35 

angry face may be different from those of hearing an angry voice or viewing whole body 36 

movements. For example, we see faces from close by and therefore personal familiarity may play 37 

a role in how we react to the angry face. This is less so for the voice or the whole body, both of 38 

which already prompt reactions when seen or heard from a distance while information about 39 

personal identity is not yet available or needed for action preparation. Thus, the angry body 40 

expression viewed from a distance and the angry face expression seen from closeby may each 41 

trigger a different reaction as behavior needs to be adapted to the concrete context. Therefore, a 42 

representation of affective meaning that is sensitive to the spatiotemporal parameters may seem 43 

desirable rather than an abstract system of higher order concepts as traditionally envisaged by 44 

emotion theorists (Ekman P and D Cordaro 2011); but see (Lindquist KA et al. 2012).  45 

 Research on the brain correlates of emotion has favored the traditional notion of abstract 46 

neural representations of basic emotions and this has also been the dominant rationale for 47 

multisensory research. Studies comparing how not just the face but also the voice and the whole 48 

body convey emotions have followed this overall basic emotion perspective and asked where in 49 

the brain affective information from different sensory systems converges (Peelen MV et al. 2010; 50 

Klasen M et al. 2011). Such representations were found in high-level brain areas known for their 51 

role in categorization of mental states (Peelen MV et al. 2010). Specifically, medial prefrontal 52 

cortex (MPFC) and superior temporal cortex (STS) represent emotions perceived in the face, 53 

voice or body at a modality-independent level. Furthermore, these supramodal or abstract 54 

emotion representations presumably play an important role in multisensory integration by 55 

driving and sustaining convergence of the sensory inputs towards the amodal emotion 56 

representation (Gerdes AB et al. 2014).  57 

The present study explores a different perspective, complementary or compatible with 58 

that of high level abstract emotion representations yet motivated by the natural variability of 59 
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daily emotion perception conditions that do not routinely involve conscious use of verbal labels. 60 

Emotion perception in naturalistic conditions is often driven by a specific context relative to a 61 

behavioral goal, as opposed to the conditions in the lab, where tasks often use explicit evaluation 62 

of emotional expressions. Under natural conditions, each sensory modality may have its own 63 

functionality such that e.g. fear is more effectively conveyed by the face, anger by the body and 64 

happiness by the voice. If so, brain responses would be characterized by specific emotion-65 

modality combinations. 66 

 Additionally, the notion that supramodal representations of basic emotions are the pillars 67 

of emotion processing in the brain and allow for smooth convergence between the different 68 

sensory modalities is not fully supported by the literature. First, since the original proposal by 69 

Ekman (Ekman P 1992) and the constructivist alternative argued by Russell (Russell JA 2003) 70 

and most recently Feldman Barrett (Lewis M et al. 2010; Barrett LF 2017), the notion of a set of 71 

basic emotions with discrete brain correlates continues to generate controversy (Kragel PA and 72 

KS LaBar 2016; Saarimaki H et al. 2016). Second, detailed meta-analyses of crossmodal and 73 

multisensory studies, whether they are reviewing the findings about each separate modality or 74 

the results of crossmodal studies (Dricu M and S Fruhholz 2016; Schirmer A and R Adolphs 75 

2017), provide a mixed picture. Furthermore, these meta-analyses also show that a number of 76 

methodological obstacles stand in the way of valid comparisons across studies. That is, taking 77 

into account the role of task (incidental perception, passive perception, and explicit evaluation of 78 

emotional expression) and the use of appropriate control stimuli reduces the number of studies 79 

that can validly be compared. Third, findings from studies that pay attention to individual 80 

differences and to clinical aspects reveal individual differences in sensory salience and 81 

dominance in clinical populations, for example in autism and schizophrenia. For example, (Karle 82 

KN et al. 2018) report an alteration in the balance of cerebral voice and face processing systems 83 

in the form of an attenuated face-vs-voice bias in emotionally competent individuals. This is 84 

reflected in cortical activity differences as well as in higher voice-sensitivity in the left 85 

amygdala. Finally, even granting the existence of abstract supramodal representations – probably 86 

in higher cognitive brain regions - it is unclear how they relate to early stages of affective 87 

processing where the voice, the face and the body information are processed by different sensory 88 

systems comprising distinct cortical and subcortical structures.  89 
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 90 

Here we used naturalistic dynamic stimuli to investigate whether the brain represents 91 

different sensory emotion expressions as modality specific or modality-invariant, using fMRI 92 

with dynamic stimuli expressing affect with either the body, the face or the voice. Importantly, 93 

we investigate these processes independently of the explicit evaluation of emotion to study 94 

whether the brain still differentiates between emotional expressions even when they are not in 95 

the direct focus of attention. We perform multivariate pattern analysis to identify cortical regions 96 

containing representations of emotion independently of the explicit evaluation of emotion.  97 

For the sake of clarity, we contrast the implications of the centralist view and the 98 

distributed modality view for the neural representation of emotions. Following the first, there 99 

should be localized representations (here multi voxel patterns) for specific emotions that are 100 

independent of modality. These region(s) would show the following behavior: (1) respond to all 101 

stimuli above some threshold (i.e. be activated by all emotions/modalities); (2) have no 102 

discernable activation pattern between modalities, that is, modality cannot be decoded from the 103 

voxel activation patterns; (3) exhibit distinct voxel activation patterns for each emotion (emotion 104 

is decodable from the regions). This would provide strong evidence for a cross-modal or 105 

modality independent emotion representation and correspond to the classical notion of basic 106 

emotions in the literature. The alternative, distributed theory postulates that emotions are 107 

represented in the brain in a modality-emotion specific way. For example, some specific 108 

emotion-modality combination like a fearful body will elicit activation patterns that are different 109 

from fear from the voice or the face. Likewise, hearing a happy voice (laughing) can elicit 110 

different brain responses from seeing a happy expression from the face or body. In terms of 111 

testing this hypothesis, we would expect to find brain regions where emotion can be decoded but 112 

only within a specific modality, not across modalities. That pattern would provide clear evidence 113 

that the decoding will be driven by specific responses to emotion-modality combination. 114 

 115 

METHODS 116 

Participants 117 
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Thirteen healthy participants (mean age = 25.3; age range = 21-30; two males) took part in the 118 

study. Participants reported no neurological or hearing disorders. Ethical approval was provided 119 

by the Ethical Committee of the Faculty of Psychology and Neuroscience at Maastricht 120 

University. Written consent was obtained from all participants. The experiment was carried out 121 

in accordance with the Declaration of Helsinki. Participants either received credit points or were 122 

reimbursed with monetary reward after their participation in the scan session. 123 

Stimuli 124 

Stimuli consisted of color video and audio clips of four male actors expressing three different 125 

emotional reactions to specific events (e.g. fear in a car accident or happiness at a party). Images 126 

were shown to the actors during recordings with the goal of triggering spontaneous and natural 127 

reactions of anger, fear, happiness and an additional neutral reaction. A full description of the 128 

recording procedure, the validation and the video selection is given in (Kret ME, S Pichon, J 129 

Grezes, et al. 2011). In total there were 16 video clips of facial expressions, 16 video clips of 130 

body expressions, and 32 audio clips of vocal expressions, half of which were recorded in 131 

combination with the facial expressions and half of which were recorded in combination with the 132 

body expressions (i.e. two audio clips per emotional expression per actor). All actors were 133 

dressed in black and filmed against a green background under controlled lighting conditions. 134 

Video clips were computer-edited using Ulead, After Effects, and Lightworks (EditShare). For 135 

the body stimuli, faces of actors were blurred with a Gaussian mask such that only the 136 

information of the body was available. The validity of the emotional expressions in the video 137 

clips was measured with a separate emotion recognition experiment (emotion recognition 138 

accuracy > 80%). For more information regarding the recording and validation of these stimuli, 139 

see (Kret ME, S Pichon, J Grezes, et al. 2011; Kret ME, S Pichon, J Grèzes, et al. 2011).  140 

Experimental design and behavioral task 141 

In a slow-event related design, participants viewed series of 1 second video clips on a projector 142 

screen or listened to series of 1 second audio clips through MR-compatible ear buds 143 

(Sensimetrics S14) equipped with sound attenuating circumaural earbuds (attenuation > 29 dB). 144 

The experiment consisted of 12 runs divided over 2 scan sessions. Six runs consisted of blocks of 145 

face and voice stimuli, followed by six runs consisting of body and voice stimuli. Blocks were 146 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/869578doi: bioRxiv preprint first posted online Dec. 10, 2019; 

http://dx.doi.org/10.1101/869578


7 

 

either auditory (consisting of 18 audio clips) or visual (consisting of 18 video clips). These 18 147 

trials within each block comprised 16 regular trials, and two catch trials requiring a response. 148 

Catch trials were included to determine that attention was diverted from explicit recognition or 149 

evaluation of the emotional expression by focusing attention on the other modality. That is, 150 

during visual blocks, participants were instructed to detect auditory catch trials, and during 151 

auditory blocks, participants were instructed to detect visual catch trials. For the auditory catch 152 

trial task, a frequency modulated tone was presented and participants had to respond whether the 153 

direction of frequency modulation was up or down. For the visual distractor task, participants 154 

indicated whether the fixation cross turned lighter or darker during the trial. A separate localizer 155 

session was also performed where participants passively viewed stimuli of faces, bodies, houses, 156 

tools and words in blocks; see (Zhan M et al. 2018) for details. 157 

Data acquisition 158 

We measured blood-oxygen level-dependent (BOLD) signals with a 3 Tesla Siemens Trio whole 159 

body MRI scanner at the Scannexus MRI scanning facilities at Maastricht University 160 

(Scannexus, Maastricht). Functional images of the whole brain were obtained using T2*-161 

weighted 2D echo-planar imaging (EPI) sequences [number of slices per volume = 50, 2 mm in-162 

plane isotropic resolution, repetition time (TR) = 3000 ms , echo time (TE) = 30 ms, flip angle 163 

(FA) = 90°, field of view (FoV) = 800 x 800 mm2, matrix size = 100 x 100, multi-band 164 

acceleration factor = 2, number of volumes per run = 160, total scan time per run = 8 min]. A 165 

three-dimensional (3D) T1-weighted (MPRAGE) imaging sequence was used to acquire high 166 

resolution structural images for each of the participants [1-mm isotropic resolution, TR = 2250 167 

ms, TE = 2.21 ms, FA = 9°, matrix size = 256 x 256, total scan time = 7 min approx.]. The 168 

functional localizer scan also used a T2*-weighted 2D EPI sequence [number of slices per 169 

volume = 64, 2 mm in-plane isotropic resolution, TR = 2000 ms, TE = 30 ms, FA = 77, FoV = 170 

800 x 800 mm2, matrix size = 100 x 100, multi-band acceleration factor = 2, number of volumes 171 

per run = 432, total scan time per run = 14 min approx.]. 172 

Analysis 173 

Pre-processing: Data were preprocessed and analyzed with BrainVoyager QX (Brain 174 

Innovation, Maastricht, Netherlands) and custom Matlab code (Mathworks, USA) (Hausfeld L et 175 
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al. 2012; Hausfeld L et al. 2014). Preprocessing of functional data consisted of 3D motion 176 

correction (trilinear/sync interpolation using the first volume of the first run as reference), 177 

temporal high pass filtering (thresholded at five cycles per run), and slice time correction. We 178 

co-registered functional images to the anatomical T1-weighted image obtained during the first 179 

scan session and transformed anatomical and functional data to the default Talairach template.  180 

Univariate analysis: We estimated a random-effects General Linear Model (RFX GLM) with a 181 

predictor for each stimulus condition of interest (12 conditions in total): four emotion conditions 182 

times three modalities (face, body, voice). We note that modality is used here in a broader sense 183 

than just the physical nature of the stimuli (sound versus visual). Additionally, we included 184 

predictors for the trials indicating the start of a new block and the catch trials. Predictors were 185 

created by convolving stimulus predictors with the canonical hemodynamic function. Finally, we 186 

included six motion parameters resulting from the motion correction as predictors of no interest. 187 

For this analysis, data was spatially smoothed with a 6mm full-width half-maximum (FWMH) 188 

Gaussian kernel. To assess where in the brain the two different experimental factors had an 189 

influence, an ANOVA was run with either modality or emotion as a factor. Additionally the 190 

ANOVA with the emotion factor was run for each modality separately. As effect sizes were 191 

generally low, the final group statistical maps were liberally thresholded at p<0.001 uncorrected. 192 

For visualization purposes, the group volume maps were mapped to the cortical surface. As this 193 

operation involves resampling the data (during which the original statistical values get lost), 194 

surface maps are displayed with discrete label values instead of continuous statistical values. As 195 

such, we do not include a colorbar in the surface map figures. 196 

Multivariate analysis: We first estimated beta parameters for each stimulus trial with custom 197 

MATLAB code by fitting an HRF function with a GLM to each trial in the time series. These 198 

beta values were then used as input for a searchlight multivariate pattern analysis (MVPA) with a 199 

Gaussian Naïve Bayes classifier (Ontivero-Ortega M et al. 2017). The searchlight was a sphere 200 

with a radius of 5 voxels. The Gaussian Naïve Bayes classifier is an inherently multi-class 201 

probabilistic classifier that performs similar to the much-used Support Vector Machine classifier 202 

in most scenarios, but is computationally more efficient. The classifier was trained to decode (1) 203 

stimulus modality (visual or auditory) (2) stimulus type (i.e. body, face or voice); (3) stimulus 204 

emotion (e.g. fear in all stimulus types vs angry in all stimulus types); (4) within-modality 205 
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emotion (e.g. body angry vs. body fear) (5) cross-modal emotion (e.g. classify emotion by 206 

training on body stimuli and testing on the voice stimuli from the body session). Classification 207 

accuracy was computed by averaging the decoding accuracy of all folds of a leave one-run out 208 

cross-validation procedure. We tested the significance of the observed decoding accuracies at the 209 

group level with a one-sample t-test against chance (50% for modality, 33% for stimulus types, 210 

25% for emotion). We also tested the emotion effect with an additional analysis where the 211 

neutral condition was excluded. As in the univariate analyses, these maps were transformed to 212 

the cortical surface for display purposes. The cross-modal decoding revealed several subcortical 213 

structures that are not visualized well on the cortical surface and therefor are displayed on a 214 

volume map (p<0.01, uncorrected). 215 

To evaluate the relative contribution of either stimulus type or of emotion in terms of 216 

information content that can be decoded, we performed an analysis where all stimuli for a 217 

specific combination of two emotions (e.g. anger and happy from the same session) were 218 

extracted and a decoder was trained to either classify the two different emotions or the two 219 

different stimulus types (body/voice or face/voice). The resulting accuracy maps were first 220 

thresholded such that regions where both the stimulus type and emotion decoder accuracy were 221 

below chance at the group level were excluded. Next we contrasted the two accuracy maps at the 222 

group level i.e. accuracy for emotion > accuracy for stimulus type and displayed these as a 223 

volume map at p<0.001 uncorrected. 224 

ROI analysis: Lastly, to gain more insight into details of the responses in some of the regions 225 

identified by the previously mentioned analyses, as well as regions known to be important for 226 

emotion or multi-modal integration (Peelen MV et al. 2010), we extracted beta values from these 227 

ROIs and made several plots that (1) display the decoding accuracy of the selected voxels for 228 

stimulus type and emotion, (2) display the mean beta values for each of the 12 conditions, (3) 229 

display the multivoxel representational dissimilarity matrix (Kriegeskorte N et al. 2008) and (4) 230 

warp the multivoxel patterns to a 2-dimensional space with multidimensional scaling and display 231 

the relative distance between the conditions with graphical indicators for the stimulus type (icon) 232 

and emotion (line color) 233 

RESULTS 234 
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Univariate analysis 235 

We ran an ANOVA with factors ‘stimulus type’ and ‘emotion’ on the beta values estimated with 236 

an RFX GLM on the entire data set, as well as separate ANOVAs with factor ‘emotion’ on the 237 

data of each stimulus type (i.e. faces, bodies, and voices). As expected, the F-map for stimulus 238 

type (see Fig. S1) revealed significant clusters with differential mean activation across stimulus 239 

types in primary and higher-order auditory and visual regions, as well as in motor, pre-motor and 240 

dorsal/superior parietal cortex. The univariate analyses did not reveal cortical regions showing a 241 

significant effect for emotion. Although the F-maps of these emotion analyses showed some 242 

small clusters at lenient thresholds (p < 0.001, uncorrected), none of these survived correction for 243 

multiple comparisons. See Supplementary results for details.  244 

Multivariate analysis with the GNB decoder 245 

We aimed to decode stimulus type by training the classifier separately for the two sessions to 246 

decode visual vs. auditory stimuli: body vs. voice (session 1) and face vs. voice (session2). As 247 

expected, stimulus type could be decoded significantly above chance level (50%, p<0.05 FWE 248 

corrected) in auditory, visual and fusiform cortex, and large part of the lateral occipital and 249 

temporo-occipital cortex, presumably including the extrastriatal body area (EBA; see Fig. 1 top 250 

panel).  251 

Decoding of emotion resulted in qualitatively lower accuracies and smaller clusters compared to 252 

the decoding of modality. Above chance accuracies (33%) for decoding emotion from all 253 

stimulus types together were observed in STS (Fig. 1, bottom panel). Next, we trained and tested 254 

the classifier to decode emotions within a specific stimulus modality, that is, considering either 255 

the combined face and body stimuli (i.e. visual), or the voice stimuli (i.e. auditory). For body and 256 

face this revealed STS, cingulate gyrus and angular gyrus. Emotion could be decoded for voice 257 

stimuli in primary and secondary auditory regions (including the superior temporal gyrus 258 

[STG]), and the precuneus (see Fig 1 bottom panel). See Table 1 for details of these results. 259 

We also trained and tested the classifier to decode emotions within each visual category, that is, 260 

considering either the face or the body. This did not reveal any clusters where emotion could be 261 

decoded accurately (suprathreshold at p<0.05 FWE corrected), although additional results were 262 

obtained at more lenient thresholds (see Fig. S4).  263 
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Figure 1: (Top) Decoder trained to classify stimulus type, for the two sessions separately, results

derived from thresholding the volume map at p<0.05, FWE corrected. (Bottom) Decoder trained

to classify emotion from all stimuli (yellow), all visual stimuli (face+body, red) and all voice

stimuli (blue), The displayed results are label maps derived from the volume map thresholded at

p<0.001 uncorrected with a minimum cluster size threshold of k=25 voxels. Abbreviations:

Angular G = angular gyrus, A1 = primary auditory cortex, STS = superior temporal cortex. 

 264 
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Table 1: Results for the decoding of emotion 265 

 cluster 

size 

clusgter 

p(unc) 

peak T peak 

p(unc) 

x y z 

All stimuli 

STS 38 0.0536 5.8422 0.0000 -3 21 -7 

Voice stimuli only 

planum temporale 749 0.001 6.462 0.000 -58 -34 6 

posterior cingulate gyrus / precuneus 187 0.058 5.654 0.000 8 -34 30 

planum temporale 210 0.046 5.206 0.000 62 -18 2 

        

Face and body stimuli 

STS 59 0.0200 6.8069 0.0000 -52 -26 -12 

right caudate 92 0.0052 6.5513 0.0000 16 -12 20 

angular gyrus 27 0.0979 6.4339 0.0000 60 -50 34 

 266 

ROI Analysis 267 

In addition to the whole-brain searchlight analysis, we performed a more sensitive region-of-268 

interest (ROI) analysis. Specifically, we used data of an independent localizer (see Methods) to 269 

identify early auditory cortex, early visual cortex, rEBA, and rFFA. We furthermore included 270 

two multisensory regions, pSTS and mPFC that were previously identified as regions holding 271 

supramodal representations of emotion (Peelen MV et al. 2010). We used an anatomical 272 

definition of these areas, defined by a spherical ROI with a radius of 5 voxels centered on the 273 

reported cluster peak locations. Finally, we included the amygdala given its important role in 274 

previous studies, most recently in the study by (Whitehead JC and JL Armony 2019) using the 275 

univariate contrast face fear > face neutral (p<0.01 uncorrected). 276 

In all ROIs, stimulus type could be decoded above chance level (one sample t-test against chance 277 

level, all p<0.0001). Furthermore, when the classifier operated on all stimuli together (that is, 278 

face, body, and voice), emotion could be successfully decoded in the EBA, auditory cortex, and 279 

left amygdala (all p<0.02). That is, in line with the results of the searchlight analysis, when the 280 

classifier operated on the data of each modality in isolation, decoding accuracies for emotion 281 

were above chance level in early visual cortex for face stimuli (p<0.03), and in auditory cortex 282 

for voice stimuli (p<0.002). Emotion could not be decoded above chance level in the supramodal 283 
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regions (mPFC and pSTS). Taken together, these results demonstrate that these regions could not 284 

be identified as supramodal as the responses were not invariant to stimulus type (see Fig. 2). 285 

Qualitatively, the RDM and MDS plots in Figure 2 show that in all tested ROIs there is a strong 286 

effect of stimulus type (blocks on diagonal for the RDM and a large distance between types in 287 

the MDS). Notable, this effect is not always clearly present in just the beta magnitudes (response 288 

levels) and is at least partially caused by the multi-voxel pattern dissimilarities. 289 
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Figure 2: I) Location of the ROI and graphs indicating decoding accuracy for stimulus type and 

emotion and emotion for each stimulus type in the ROI. II) Trial-wise beta values for all 12 

conditions (3x modality and 4x emotion) averaged over the ROI and group. Error bars indicate 

SE. II) Representational dissimilarity matrix for the ROI. IV) Multidimensional scaling plot of 

the group averaged trial-wise beta values. Line colors indicate same emotion, icons display 

modality. Distance in the plot is related to similarity of the ROI voxel activation patterns. Colors 

as in the beta plot for emotion. 

 290 

Cross-modal decoding 291 

We performed an additional analysis to gain insight into where in the brain supramodal emotion 292 

regions might be found by training a classifier to decode emotion across stimulus modalities. 293 

Being able to predict emotion by training on one modality and testing on another modality would 294 

be a strong indication of supramodal emotion encoding in the brain. Therefore, the cross-modal 295 

classifier was trained (or tested) on either the body or face stimuli and tested (or trained) on the 296 

voice stimuli from the body or face session, respectively. Thus, four classifiers were trained in 297 

total (training on body and testing on voice, training on voice and testing body, training on face 298 

and testing on voice, training on voice and testing on face). In contrast to the successful decoding 299 

of modality and emotion within modality, none of these cross-modal classifiers resulted in 300 

accurate decoding of emotion (p<0.001, see Supplementary Fig. S5).  301 

Contrasting accuracies for emotion and modality 302 

There was little overlap in regions identified by the within stimulus type classifier (see Fig. 2 and 303 

S4). Specifically, regions where emotion was decoded successfully from body stimuli did not 304 

converge with regions where emotion was decoded successfully from the face and/or voice. 305 

Therefore, to identify regions that have a purely supramodal representation of emotion, we 306 

contrasted the accuracy map for modality versus emotion directly. Here, finding regions having 307 

higher decoder accuracy for emotion compared to modality would be a strong indication for 308 

supramodal emotion encoding. This analysis revealed in general that, as expected, modality 309 

could be decoded with greater accuracy than emotion in primary auditory and visual regions, as 310 

well as in parietal and pre-motor regions. We could not clearly identify any regions where binary 311 
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combination of two specific emotions could be decoded with higher accuracy than the modality. 312 

Only for fear and neutral in the face-voice session did we find a region in the medial motor 313 

cortex and for happy and neutral in the body-voice session in the white matter (at p<0.001 314 

uncorrected, see Fig. S6). 315 

DISCUSSION 316 

Our results indicate that the brain regions involved in emotion processing are modality specific. 317 

That is, in the regions where emotion can be decoded, it could only be decoded within modality 318 

but not across modalities, indicating that the decoding is driven by a specific response to a 319 

specific emotion-modality combination. In a departure from the few previous studies using a 320 

partially comparable approach we found evidence for sensory specific rather than abstract 321 

supramodal representations that sustain perception of various affective signals as a function of 322 

the modality (visual or auditory) and the stimulus category (face, voice or body). Because of the 323 

three stimulus categories used, the different emotions studied, the task conditions, and the 324 

converging results from different analysis techniques, our study presents a novel approach to 325 

understanding the specific contribution and the neural basis of emotional signals provided by 326 

different sensory modalities.  327 

To understand our findings against the background of the literature, some specific aspects 328 

of our study must be highlighted. We used dynamic realistic face and body stimuli instead of 329 

point light displays or static images. The latter are also known to complicate comparisons with 330 

dynamic auditory stimuli (Campanella S and P Belin 2007). Next, our stimuli do not present 331 

prototypical emotion representations obtained by asking actors to portray emotions but present 332 

spontaneous whole body reactions to images of familiar events. The images we used may 333 

therefore be more spontaneous and trigger more sensorimotor processes in the viewer than posed 334 

expressions. Third, many previous studies used explicit emotion recognition (Lee KH and GJ 335 

Siegle 2012), passive viewing (Winston JS et al. 2003), implicit tasks like gender categorization 336 

(Dricu M and S Fruhholz 2016) or oddball tasks presented in the same modality as the stimulus. 337 

In contrast, our modality specific oddball task is presented in the alternate modality of the 338 

stimulus presentation thereby diverting attention not only from the emotion content but also from 339 

the perceptual modality in which the target stimuli of that block are shown. This task was 340 

intended to approximate the naturalistic experience of emotional signals, where often one is 341 
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engaged in one activity (visual perception) when another event intrudes (an auditory event). We 342 

discuss separately the findings on the major research questions.  343 

 344 

Univariate analysis 345 

Although our goal was to characterize neural responses with MVPA techniques, for the 346 

sake of comparisons with the literature, we also briefly discuss our univariate results. How do 347 

these results compare to findings and meta-analyses in the literature? As a matter of fact, there 348 

are no previous studies that used comparable materials (four emotion categories, three stimulus 349 

types, two modalities) and an other modality centered task like the present. The studies that did 350 

include bodies used only neutral actions, not whole body emotion expressions (Dricu M and S 351 

Fruhholz 2016) except for one study comparing face and body expression videos by (Kret ME, S 352 

Pichon, J Grezes, et al. 2011). Only the study by Peelen et al. used faces, bodies, and voices, but 353 

with a very different task as we discuss below (Peelen MV et al. 2010).  354 

Compared to the literature, the findings of the univariate analysis present 355 

correspondences as well as differences. A previous study (Kret ME, S Pichon, J Grezes, et al. 356 

2011) with face and body videos used only neutral, fear and anger expression and a visual 357 

oddball task. They reported that EBA and STS show increased activity to threatening body 358 

expressions and FG responds equally to emotional faces and bodies. For the latter, higher activity 359 

was found in cuneus, fusiform gyrus, EBA, tempo-parietal junction, superior parietal lobe, as 360 

well in as the thalamus while the amygdala was more active for facial than for bodily 361 

expressions, but independently of the facial emotion. Here we replicate that result for faces and 362 

bodies and found highly significant clusters with differential mean activation across stimulus 363 

types in primary and higher-order auditory and visual regions, as well as in motor, pre-motor and 364 

dorsal/superior parietal cortex (Fig. S1).  365 

 366 

Regions sensitive to stimulus category were not only found in primary visual and auditory cortex 367 

as expected but also in motor, pre-motor and dorsal/superior parietal cortex consistent with the 368 

findings in Kret et al 2011. In view of the literature on perception of emotion expressions in 369 

either the face, voice or body it is not surprising that dorsal parietal cortex, pre- motor cortex and 370 

anterior insula (Fig. S2) differentially respond to emotions as different emotions trigger different 371 

adaptive actions (de Gelder B 2006; Grezes J et al. 2007; Pichon S et al. 2008; Whitehead JC and 372 
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JL Armony 2019). Interestingly, the interaction effect between modality and emotion also 373 

revealed the retrosplenial cortex (Fig. S3). Retrosplenial cortex receives input from areas known 374 

to play a role in processing salient information (prefrontal cortex, superior temporal sulcus, 375 

precuneus, thalamus, and claustrum (Maddock RJ 1999). The retrosplenial cortex is associated 376 

with navigation and memory functions and may be part of a network that conveys predatory 377 

threat information to the cerebral cortex (de Lima MAX et al. 2019). A similar functionality may 378 

be reflected in this activity here. Activity in this area is also consistent with the recent findings 379 

that the retrosplenial cortex contributed to the accurate classification of fear stimuli. (Caruana F 380 

et al. 2018).  381 

To summarize, this univariate analysis including three stimulus modalities and four 382 

emotion categories replicates some main findings about brain areas involved respectively in face, 383 

body and voice expressions while also revealing parietal and motor area activity but does not 384 

provide evidence for overlap in brain activity neither for modality nor emotion category.  385 

  386 

Multivariate analysis 387 

The goal of our multivariate approach was to reveal the areas that contribute most 388 

strongly to an accurate distinction between the modalities and the stimulus emotion. Our results 389 

of the MVPA searchlight show that modality type can be decoded from the sensory cortex and 390 

that emotion can be decoded in STG for voice stimuli and in STS for face and body stimuli. We 391 

found no overlap in brain regions that contribute to the classification of emotion when using 392 

either the face, the body or the voice decoder (Fig. S4). Thus the brain areas that are involved in 393 

discriminating between face, voice or body expressions irrespective of the emotion are different 394 

from each other. Nor did we find evidence for neural activity overlap the other way around when 395 

using a cross-modal emotion decoder and looking for possible brain areas common to the 396 

modalities (Fig. S5). Lastly, we could not clearly identify regions where emotion could be 397 

decoded with higher accuracy than modality (Fig. S6). To put it negatively, we could not clearly 398 

identify supramodal emotion regions, defined by voxel patterns where emotion could be decoded 399 

and that would show very similar voxel patterns for the same emotion in the different modalities. 400 

This clearly indicated that the brain responds to facial, body and vocal emotion expression in a 401 

unique fashion. Thus the overall direction pointed to by our results seems to be that that being 402 

exposed to emotional stimuli (that are not task relevant and while performing a task requiring 403 
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attention to the other modality than that in which the stimulus is presented) is associated with 404 

brain activity that shows both an emotion specific and a modality specific pattern.  405 

 406 

ROI analysis 407 

 To follow up on the whole-brain analysis we performed a detailed and specific analysis 408 

of a number of ROIs. For the ROIs based on the localizer scans (early visual, auditory areas as 409 

well as FFA and EBA) stimulus type could be decoded and these results are consistent with the 410 

MVPA searchlight analysis. We also defined ROIs based on the literature with the goal of 411 

comparing our results to findings about higher order areas that had been identified as 412 

supreamodal areas, mPFC and pSTS. This analysis revealed accurate decoding of stimulus type 413 

but no evidence of supramodal representations.  414 

Two previous MVPA studies addressed similar issues investigated in this study using 415 

faces, bodies and voices (Peelen MV et al. 2010) or bodies and voices (Whitehead JC and JL 416 

Armony 2019). The first study reported medial prefrontal cortex (MPFC) and posterior superior 417 

temporal cortex as the two areas hosting supramodal emotion representations. These two areas 418 

do not emerge in our MVPA searchlight analysis. To understand this very different result it is 419 

important to remember that in their study participants were encouraged to actively evaluate the 420 

perceived emotional states. The motivation was that explicit judgments would increase activity 421 

in brain regions involved in social cognition and mental state attribution (Peelen MV et al. 422 

2010). In contrast, the motivation of the present study was to approximate naturalistic perception 423 

conditions. Our design and task were intended to promote spontaneous non-focused processes of 424 

the target stimuli and did not promote amodal conceptual processing of the emotion content. It is 425 

likely that using an explicit recognition task would have activated higher level representations 426 

e.g. posterior STS, prefrontal cortex and posterior cingulate cortex that would then feedback to 427 

lower level representations and modulate these towards more abstract representations (Schirmer 428 

A and R Adolphs 2017). Note that no amygdala activity was reported in that study. The second 429 

study using passive listening or viewing of still bodies and comparing fear and neutral 430 

expressions also concludes about a distributed network of cortical and subcortical regions 431 

responsive to fear in the two stimulus types they used (Whitehead JC and JL Armony 2019). Of 432 

interest is their finding concerning the amygdalae and fear processing. While in their study this is 433 

found across stimulus type for body and voice, the classification accuracy when restricted to the 434 
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amygdalae was not significantly above chance. They concluded that fear processing by the 435 

amygdalae heavily relies on contribution of a distributed network of cortical and subcortical 436 

structures.  437 

Our findings suggest a different and a novel perspective on the role of the different 438 

sensory systems and the different stimulus categories that convey affective signals in daily life 439 

and fits with the role of emotions as seen from an evolutionary perspective. Our results are 440 

compatible with an ecological and context sensitive approach to brain organization (Cisek P and 441 

JF Kalaska 2010; Mobbs D et al. 2018) rather than with an exclusive focus on high order 442 

representation of emotion categories grounded in concepts and verbal labels. For comparison, a 443 

similar approach not to emotion concepts but to cognitive concepts was argued by Barsalou et al. 444 

(Barsalou LW et al. 2003). This type of distributed organization or emotion representation may 445 

be more akin to what is at stake in the daily experience of affective signals and how they are 446 

flexibly processed for the benefit of ongoing action and interaction in a broader perspective of 447 

emotions as states of action readiness (Frijda NH 2004). 448 

Our results are relevant for two longstanding debates in the literature, one on the nature 449 

and existence of abstract emotion representations and basic categories and the other on processes 450 

of multisensory integration. Concerning the first one, our results have implications for the debate 451 

on the existence of basic emotions (Ekman P 2016). Interestingly, modality specificity has rarely 452 

been considered as part of the issue as the basic emotion debate largely focusses on facial 453 

expressions. The present results might be viewed as evidence in favor of the view that basic 454 

emotions traditionally understood as specific representations of a small number of emotions with 455 

an identifiable brain correlate (Ekman P 2016) simply do not exist but that these are cognitive-456 

linguistic constructions (Russell JA 2003). On the one hand, our results are consistent with 457 

critiques of basic emotions theories and meta-analysis (Lindquist KA et al. 2012) as we find no 458 

evidence for representations of emotions in general or specific emotions within or across 459 

modality and stimuli. Affective information processing thus appears not organized as 460 

categorically, neither by conceptual emotion category nor by modality, as was long assumed. 461 

Emotion representation, more so even than object representation, may possibly be sensory 462 

specific or idiosyncratic (Peelen MV and PE Downing 2017) and neural representations may 463 

reflect the circumstances under which specific types of signals are most useful or relevant rather 464 

than abstract category membership. This pragmatic perspective is consistent with the notion that 465 
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emotions are closely linked to action and stresses the need for more detailed ethological behavior 466 

investigations (de Gelder B 2016) . 467 

 468 

While our study was not addressing issues of multisensory perception, our findings may 469 

have implications for theories of multisensory integration. As has often been noted, human 470 

emotion research by and far is still limited to the study of facial expressions. In line with the 471 

dominant view studies extending the scope of facial expression based theories have primarily 472 

been motivated to discover similarities across different modalities and stimulus types. Our group 473 

has initiated studies that go beyond the facial expression and found rapid and automatic influence 474 

of one type of expression on another (face and voice, (de Gelder B et al. 1999); face and body 475 

(Meeren HK et al. 2005); face and scene (Righart R and B de Gelder 2008; Van den Stock J et al. 476 

2013); body and scene, (Van den Stock J et al. 2014); auditory voice and tactile perception (de 477 

Borst AW and B de Gelder 2017). These original studies and subsequent ones (Müller VI et al. 478 

2012) investigated the impact of one modality on the other and targeted the area(s) where 479 

different signals converge. For example, Müller et al. (Müller VI et al. 2012) report posterior 480 

STS as the site of convergence of auditory and visual input systems and by implication, as the 481 

site of multisensory integration. Note that here and in many other studies the amygdala and its 482 

connectivity to face and voice areas emerges as a core structure involved in multisensory 483 

integration. Current studies did not yet raise the question of sensory specificity of the 484 

representations at stake in such cross-modal effects. Our findings stress the importance of 485 

sensory specific representation and indicate that aside from loci of integration based presumably 486 

on amodal representations, multisensory perception and integration seems to respect stimulus 487 

complementarity in the vertical plane rather than convergence between different emotion signals 488 

onto an abstract supramodal representation.  489 

 490 

The motivation to include three stimulus categories led to some limitations of the current 491 

design because two separate scanning sessions were required to have the desired number of 492 

stimulus repetitions. To avoid that the comparison of representations of stimuli from two 493 

different sessions was biased by a scan session effect, we did not include any results that referred 494 

to differences or commonalities of stimuli from different sessions (e.g. bodies vs faces). A 495 

second limitation is that the voice stimuli were not controlled for low level acoustic features over 496 
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different emotions and therefore results from the decoding of emotion from the voice stimuli 497 

may partly have reflected these differences. 498 

Conclusions 499 

Our results show that the brain correlates of observing emotional signals from the body, 500 

the face of the voice are specific for the modality as well as for the specific signal within the 501 

same modality. Our results underscore the importance of considering the specific contribution of 502 

each modality and each type of affective signal rather than only their higher order amodal 503 

similarity. We suggest that future research may look into the differences between the emotion 504 

signals and how they are complementary and not only at amodal similarity.  505 

 506 
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Supplementary results 613 

Univariate 614 

The F-map for emotion showed regions with different activation levels across emotions in615 

insular cortex, the superior temporal sulcus (STS), retrosplenial cortex, angular gyrus, and616 

superior medial occipital cortex, see Fig. S2. 617 

We ran separate ANOVAs with factor ‘emotion’ for each stimulus type condition (voices, faces,618 

bodies; see Fig. S2), to identify regions that respond differentially across emotions within a619 

specific stimulus type. For the face condition, this revealed clusters in STS and retrosplenial620 

cortex. For the body condition, we observed regions in inferior temporal cortex and the621 

intraparietal sulcus (IPS). Finally, the ANOVA for the voice condition (for session 1 and session622 

2 separately) revealed auditory cortex, premotor cortex, IPS and angular gyrus. 623 

We then tested for an interaction effect between the factors stimulus type and emotion. This624 

revealed clusters in the retrosplenial cortex, the dorsolateral prefrontal cortex (dLPFC), auditory625 

cortex and insula, see Fig. S3. 626 

Supplementary Figure 1 627 

 
Figure S1: F-map (p<0.001 uncorrected) for stimulus type effect 
 628 

Supplementary Figure 2 629 
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Figure S2. F-map for the ANOVA with factor ‘emotion’, calculated either for all stimuli 

(orange) or for each stimulus type separately (bodies = red; faces = green; voices session 1 = 

dark blue; voices session 2 = light blue). The displayed results are label maps derived from the 

volume map thresholded at p<0.001 uncorrected. 
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Supplementary Figure3 631 
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Figure S3. Interaction emotion and stimulus type. The displayed results are label maps derived 

from the volume map thresholded at p<0.001 uncorrected. 

 632 

Supplementary Figure 4 633 

 

Figure S4: (Left) Decoder trained to classify emotion, for all stimuli and for each stimulus type

separately each modality separately. (Right)  Decoder trained to classify emotion excluding the
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neutral stimuli, for all stimuli and for each stimulus type separately each modality separately. 

The displayed results are label maps derived from the volume map thresholded at p<0.001 

uncorrected. 
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Supplementary table 1: 635 

 cluster 

size 

cluster p 

(unc) 

peak 

T 

Peak p 

unc 

x y z 

All emotion 

planum temporale 22 0.505 4.237 0.001 -60 -28 14 

        

Emotion, no neutral 

inferior frontal gyrus 26 0.111 5.868 0.000 -44 4 16 

        

Emotion from body only 

paracingulate gyrus 76 0.213 7.364 0.000 2 50 8 

        

Emotion from body only, no neutral 

frontal pole 22 0.150 6.957 0.000 26 58 18 

intraparietal sulcus 34 0.079 6.048 0.000 -34 -62 48 

superior temporal sulcus 25 0.127 5.521 0.000 -60 -52 4 

paracingulate gyrus 39 0.062 4.915 0.000 2 50 8 

        

Emotion from face only 

superior lateral occipital cortex 31 0.442 5.441 0.000 14 -80 40 

precuneus / posterior cingulate gyrus 23 0.513 4.569 0.000 10 -36 28 

        

Emotion from face only, no neutral 

ventrolateral prefrontal cortex 26 0.121 8.237 0.000 -48 6 18 

temporooccipital cortex 68 0.018 6.286 0.000 46 -50 -6 

occipital cortex / V3 22 0.151 5.055 0.000 -26 -98 10 

superior parietal lobe 20 0.170 4.778 0.000 -24 -62 52 

        

Emotion from voice 

planum temporale 749 0.001 6.462 0.000 -58 -34 6 

posterior cingulate gyrus / precuneus 187 0.058 5.654 0.000 8 -34 30 
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planum temporale 210 0.046 5.206 0.000 62 -18 2 

precentral gyrus 50 0.307 4.629 0.000 -30 2 38 

        

Emotion from voice, no neutral 

planum temporale 21 0.148 4.773 0.000 -66 -24 4 

 636 

Supplementary Figure 5 637 

 

Figure S5. Crossmodal decoding of emotion. Red colors are for regions were emotion could be 

decoded from training on the body stimuli and tested on the voice stimuli from the body session. 

Green colors are for training on the voice stimuli from the body session and testing on the body 

stimuli. The same logic applies to stimuli from the face session (see top diagram). Results are at 

t>3.00 (p<0.01) uncorrected. 
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Figure S6. Comparison of decodability of modality and emotion. Results at p<0.001 

uncorrected. Blue colors indicate where decoding accuracy for modality was higher than for 

emotion and vice versa for yellow colors. Diagrams above figures display what stimuli were 

used for decoding: the top left panel displays results for the face (face icon) and voice (sound 

icon) stimuli where the fear (F) and neutral (N) emotions were used and the angry (A) and 

happy (H) stimuli were left out. 

 640 

 641 

1 

or 

re 

d 

d 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/869578doi: bioRxiv preprint first posted online Dec. 10, 2019; 

http://dx.doi.org/10.1101/869578

