Project goal

Enabling technologies for automated prediction and analysis of human movement qualities, entrainment, non-verbal full-body social emotions.

Foundation and consolidation of a radically new motion analysis technology.

How?

Analysis grounded on novel neuroscientific, biomechanical, psychological, and computational evidence.

Towards time-adaptive technologies operating at multiple time scales in a multi-layered approach. Dynamically adapted to the human time.

Dynamically adapted to the human time.

Impact

A novel generation of motion capture technologies.

Creative and Cultural Industry.

Health, Sport, Well-Being.

Emergence of an innovation ecosystem around a future technology.

Education, Entertainment, Performing Arts, Cultural Heritage.

Towards time-adaptive technologies operating at multiple time scales in a multi-layered approach.

Dynamically adapted to the human time.

Foundation and consolidation of a radically new motion analysis technology.

Social emotions, entrainment, non-verbal full-body prediction and analysis of human movement qualities.

Enabling technologies for automated multi-timescale sensitive movement technologies.

Consortium:

University of Genoa, DIBRIS, Casa Paganini-InfoMus, Italy (Coordinator)
University of Montpellier, EuroMov, France
Royal Institute of Technology-KTH, Sweden
Visual Business Consultants, Greece
University of Maastricht, The Netherlands
Qualisys, Sweden
Fondazione Istituto Italiano di Tecnologia IIT, Italy
University College London, UK
Durham University, UK
Waterloo University, Canada
Western Sidney University, Australia

Third parties:

GDI Hub, UK
Wylab, Italy

entimement.dibris.unige.it
cordis.europa.eu/project/entimement
twitter.com/EnTimeMentEU
multi-timescale sensitive movement technologies