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1 Introduction 

This deliverable summarises the findings of studies that aim to develop the scenarios for the 

chronic pain use case. It comprises three main parts: 

- Movement data collection in participants’ homes and understanding of home 

activity challenges: This section focuses on the collection of a novel dataset that 

captures body movement and corresponding self-report of people with chronic pain 

as they carry out in their own home functional activities of value to them. The purpose 

of the dataset is for advancing investigation on the automatic detection of pain and 

related experiences in spontaneous activities of people with chronic pain. The study 

reported also covers interviews with the participants with chronic pain to provide 

further insight into the roles that technology could play in supporting self-

management. 

- Understanding of relevant ground truth for building movement dataset that is 

rudimentary to the development of technology for self-management in the context 

of physical activity: This section reports two studies. The first study takes advantage 

of interviews with participants in their home from the above section and probes the 

use of chatbots as a way to gather self-report from participants while at the same time 

creating valuable moments for reflection and companionship. The second study 

explores with physiotherapists a more refined language of pain-related protective 

behaviour than the one presented in pain literature (Keefe and Block 1982).  

- Modelling of physical activity related pain behaviour: This section also covers two 

studies. The first study reports improvement on automatic recognition of pain-related 

behaviour based on the fusion of body movement and muscle activity in a graphical 

structure model that reflects natural body configuration. The software is reported in 

D3.4. The second study presents initial experiments on automatic classification of pain 

levels based on the new dataset. 

2 A Home Study and The EmoPain@Home EnTimeMent Dataset 

The main aim of the home study was to create an open dataset (called EmoPain@Home 

EnTimeMent dataset) capturing pseudonymized movement data of people engaged in 

everyday activities in their homes. There are still very few movement datasets that reflect in-

the-wild situations (one of the findings from our datasets survey reported in D3.8), and there 

are almost no datasets that capture body movements of people with chronic pain in their 

daily life. The primary purpose of this new dataset is for investigation of automatic recognition 

of pain and related experiences from body movement. 

Additional aims of the study included: 1) to further understand (beyond the survey findings 

reported in previous deliverable D4.4) the types of movement that would be useful to record 

in homes of people with chronic pain to inform technology-based intervention; 2) to 
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understand how we can develop self-annotation approaches to acquire richer labels; and 3) 

since the study started during the COVID-19 lockdown, it further afforded us the opportunity 

to explore how studies could be remotely run in participant homes with minimal 

intrusiveness.  Despite its challenges, this has been an interesting journey. 

An overview of the EmoPain@Home dataset is given in D3.8. This section describes the 

protocol used in the study and analyses of the dataset. Preliminary modelling of the dataset 

is reported in Section 4.3. Further modelling will be pursued in the next year of work. 

2.1  Protocol 

The study was approved by the UCL Research Ethics Committee (Project Ref: 5095/001). 

2.1.1 Recruitment  

Participants were recruited through open-call advertisements on social media (i.e., Twitter), 

as well as by directly getting in touch with relevant support groups and gatekeepers within 

different pain organisations. All potential participants had been extensively briefed before 

signing up to the project, either via public presentations by the members of the research 

group, or by discussing with the researcher an information pack prepared for the study. 

Participants signed a standard consent form with additional levels of optional consents. The 

optional consents covered the following:  

1. use of anonymous data (sensor data, text responses from diaries, self-reports, 

interviews) by other researchers; 

2. use of photos withxin dissemination (written) projects; 

3. use of photos, videos and audio in presentations; 

4. use of personal information for secondary analysis by the research group; 

5. option to be contacted to participate in follow-up studies within the project, or future 

studies of a similar nature.  

All responses were captured via a REDCap form, which was subsequentially stored in a UCL 

Data Safe Haven (hereafter, DSH) folder for higher data protection level 

(https://www.ucl.ac.uk/isd/services/file-storage-sharing/data-safe-haven-dsh). DSH is used 

for very sensitive data, e.g., clinical data. 

10 participants were recruited, but one withdrew, resulting in 9 participants taking part in the 

study. The participants comprised 5 female and 5 male between the ages of 27 and 59 (1 

participant in their 20s, 2 participants in their 30s, 3 participants in their 40s, and 4 

participants in their 50s; mean=45.11, standard deviation=11.50). All participants recruited 

self-identified as living with musculoskeletal chronic pain (CP) involving the lower back area, 

although the severity of their condition greatly varied. 4 of the participants reported sciatica 

as their CP condition; 2 participants reported CP resulting from an old spinal injury; and the 3 

others reported other CP. See Table 1 for details on the activities the participants were 

engaged in during the data recordings. 

https://www.ucl.ac.uk/isd/services/file-storage-sharing/data-safe-haven-dsh
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Table 1. Types of activities recorded. The * on the ID means that the person took part in both supervised and unsupervised 
sessions. Activities in bold were only carried out in unsupervised sessions, whereas activities underlined were carried out in 
both supervised and unsupervised contexts 

ID Challenging activities Activities not challenging 

P002* Changing bed sheets  

Washing up  

Loading washing machine 

Unloading washing machine  

Clean windows 

Power walking  

Sweeping floors  

Dusting  

Hoovering 

P003* Hoovering 

Washing up  

Clean bathroom 

Unloading shopping  

Cleaning windows  

Tidying up 

Washing up 

Unloading washing machine 

Loading washing machine 

P004* Hoovering  

Changing bed sheets  

Vacuuming inside of car  

Watering garden 

Clean bathroom  

Dusting inside of car  

Preparing food  

Cleaning parrot cage 

P005 Painting shelves  

Painting wall 

 Power walking 

 Cleaning bathroom 

- 

P006 Changing bed sheets Unload dishwasher 

 Organising boxes 

P007 Unloading washing machine  

Unloading dishwasher 

 Changing bed sheets 

Loading washing machine 

 Loading dishwasher 

 Tidying up 

P008 Washing up  

Hanging clothes to dry  

Hoovering  

Changing bed sheets 

 Cleaning windows 

Yoga 

 Unloading washing machine  

P009 Ironing 

 Preparing food 

Filing documents 
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P010 Tidying up - 

2.1.2 Sensing kit and other material 

Body movement sensors: The Notch sensors (www.wearnotch.com) (see Figure 1) and the 

accompanying smartphone app were used to capture the movement of participants. The 

Notch sensors were used as they are low-cost, wearable and run on most smartphones. This 

allowed us to simply send the sensors and a smartphone by post to the participants, and let 

the participant wear the sensors on their own. This set up also allowed participants to be free 

to move between rooms as they would normally do. The cost and the setup reflect more 

closely a possible real-life scenarios, both in terms of affordability and ease of use.   

 

 

Figure 1. Notch sensors used 

 

6 Notch sensor modules were used. These were placed on one side of the person’s body. 

Single-sided positioning was motivated by previous literature [Olugbade et al. 2018, 2019], 

which showed that getting data from just one side of the body could be sufficient for 

automatic detection of pain and related states while reducing potential interference between 

sensors typical of larger network of sensors. We only used movement sensors due to the 

already high effort required of participants in terms of managing the sensors while in 

potentially painful scenarios.  In discussion with the clinical psychologist on the team, we 

concluded that as a first data collection in the wild with only remote interaction with the 

researcher, the setup should not be any more demanding for the participants.  

Each participant wore the set of 6 Notch modules at the following positions: 1 x right wrist; 1 

x right upper arm; 1 x chest; 1 x waist; 1 x right thigh; 1 x right calf (see Error! Reference 

ource not found.). Each Notch module is equipped with 3 inertia sensors (accelerometer, 

gyroscope and compass), which allowed us to measure joint positions and 3D Euler angles at 

a sampling frequency of 40 Hz. 

http://www.wearnotch.com/
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Participants were fully trained on how to wear the sensors and to how to calibrate and turn 

on and off the sensors, as well as on how to record, download and share recordings, but they 

carried out each of these tasks under the remote supervision of the researcher (i.e. via a 

videoconferencing system). In some instances, one of the motion capture modules failed to 

come on when turned on; in that case, the participant was asked to record using the 5 

modules that worked (on the right wrist, right upper arm, chest, waist, and right thigh).  

 

Video camera and microphone: The webcam and microphone of the participant’s computer 

used for the videoconference with the researcher was used to record the sessions for 

qualitative analyses as well as to capture the self-reports. The video and audio data were 

livestreamed by the researcher on their own computer, and the data was recorded at the 

researcher end. A private videoconference connection was used to maximise confidentiality 

of the data, and the recorded data was immediately moved to a more secure location, e.g. a 

hardware-encrypted offline disk, or the UCL DSH. It was positioned in such a way to maximise 

the view of the activity. However, as the activity was ubiquitous, the activity would not always 

be in the range of the cameras. The participant's voice self-report would be continuously 

captured. The visibility from the video camera was also dependent on the size of the room, 

and the furniture configurations.  

Diary: A diary (Error! Reference source not found.) was prepared to help participants reflect 

n their days and their plans for a given day. The diary was used during the full period of the 

Figure 2. Sensors positioning (on body and in diagrammatic form) 
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study to understand how their home activities are affected by their pain level and general 

affective states. The aim was to  

 

 

 

Figure 3. Diary instance 
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understand in more details how a pain and mood aware wearable device could better support 

people in planning and engaging with their home activities. The diary served a double 

purpose: on the one hand, it was a reflection tool for participants to preliminary think about 

some of the topics discussed during the interviews; on the other hand, it functioned as a 

comparative tool for the researcher to get a sense of how participants’ perceptions of their 

pain, confidence, worries, plans, etc. varied throughout the day, and between supervised 

moments (i.e. interviews), and unsupervised ones (i.e. diary). 

 

 

Figure 4. Schematic overview of data collection protocol. In actuality, the days may not be consecutive, but spread across a 
slightly longer period according to participants’ availability 
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2.1.3 Data collection protocol 

Participants were given the option to sign up for just one or two recording sessions. All 

participants except one had 1 half-hour training session and 3 hour-long recording sessions.  

All study sessions within this leg of the study were carried out with the researcher present. 

The entire study was conducted remotely and in compliance with Covid-19 health and safety 

protocols. Participants were sent all the equipment needed via courier, and interviews and 

observations were conducted via Microsoft Teams. All participants were reimbursed for their 

time at the standard rate of £10 per hour. Each session was split into two main parts: activities 

and interview. 

Activities: Participants were asked to perform indoor household activities that they would 

normally carry out as part of their day-to-day routines. Participants performed between 1 and 

3 activities each session, with each activity lasting between 5 and 30 minutes, and with an 

average of 15 minutes per activity. Activities included chores as varied as cleaning surfaces, 

hoovering floors, painting, washing dishes, loading/unloading washing machines, etc (see 

Table 1). Before starting each activity, participants were asked to label it as either 

‘challenging’ or ‘not challenging’; it should be noted that, they had been instructed by the 

researcher that ‘challenging activities’ should not be understood as activities that go out of 

their routine, or that could cause any harm to them.  

While carrying out each activity, participants’ movements were recorded via video and 

motion capture sensors (see Section 2.1.2). Participants self-reported their levels of pain, 

worry, and confidence every minute while performing the activities. In particular, they 

responded to the following prompt from the researcher: “What is your level of pain, worry, 

and confidence at this moment in time?”. Pain and worry were assessed on an ascending 

numerical scale from 0 to 10, where 0 equalled to ‘no pain (or worry)’ and 10 to ‘very severe 

pain (or worry)’; confidence was assessed using an ordinal scale of {no confidence; less than 

average confidence; average confidence; more than average confidence; max confidence}. In 

order to avoid disruption to the overall flow of the physical activity, the long-form question 

above was replaced by a shorter prompt (i.e. ‘time’). 

Interview: Participants took part in 30-minute semi-structured interviews during each 

session. Interview scripts were prepared in advance, but such script served as merely a set of 

cues, with most of the interviews being adapted on the go according to the flow of the 

conversation and responses from the interviewee. Nonetheless, throughout the interviews, 

four main topics were explored:  

1. Participants’ understandings and descriptions of what makes an activity challenging 

or not challenging; 

2. Explorations of the self-reported experiences (worry, pain, confidence), questioning 

what these constructs mean to participants; 
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3. Discussion regarding the process and manner of self-reporting itself, questioning its 

usefulness for participants and how it could be improved; 

4. Discussion on expectations and hopes regarding the future use of technology for 

chronic pain management. 

While the researcher strived to dedicate roughly an equal amount of time to each topic, the 

actual time allotted greatly varied and was adapted to how much each participant was 

interested and engaged in each topic.  

Diary: Additionally, participants were asked to fill in a diary twice a day while taking part in 

the study (see Figure 3). This was completely optional, and, while reminders were sent by the 

researcher twice daily (AM and PM), participants were never coerced into filling it in, nor they 

were penalised for not doing it. In total, for those who completed the diary in every instance, 

8 records were collected. 

Unsupervised activities: Lastly, half of the participants took part in an extra leg of the study 

a few months after their first experience. As part of this, they used the sensors in 4 additional 

30-minute recording sessions, carrying out 2 activities in each session. Out of these, 2 sessions 

were completely unsupervised, i.e. they carried out activities on their own and with only the 

body movement sensors (and so video and audio were not recorded), self-reporting only at 

the beginning and end of each activity. An unsupervised approach was followed for multiple 

reasons: 1) to speed up the data collection process since participants could carry out activities 

at their own leisure, without needing to make suitable arrangements for both them and the 

researcher; 2) to better understand how comfortable potential users would be in using 

wearable technology on their own; 3) to get a sense of the experience of the participants 

when not continuously self-reporting. (2) and (3) were further discussed with participants 

themselves through a brief interview at the end of the last extra session. We further 

envisaged that the unsupervised approach could be important to give participants the 

possibility to carry out activities in parts of the house that were considered more private, or 

during more private moments of the day (e.g., in the morning), but which may also be critical 

to self-management (e.g., starting the day may be harder as the body has to warm up). For 

unsupervised sessions, activities were discussed in advance to ensure that people would not 

overdo in order to fulfil the requirements for the project; the researcher also ensured that 

someone was present in the home while such activities were carried out, so as to minimise 

potential risks of injury.  

2.1.4 Data storage 

As a result of this study, the following data have been produced: 

1. Pseudonymised motion-capture movement data (.bvh and .csv files); 

2. Pseudonymised numerical self-reports; 

3. Pseudonymised interview transcripts (identifiable information such as names, 

locations, etc., were removed); 
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4. Interview audio and video recordings (only open to members of the research team). 

2.2 Qualitative analysis 

2.2.1 Methodology 

All audio data from the interviews were transcribed and analysed, i.e. summarised and 

grouped into themes and codes according to the principles of latent and reflexive thematic 

analysis (Joffe & Yardley, 2004). Reflexive analysis was chosen in order to be flexible and 

enable codes and themes to emerge from specific research questions used to probe the data 

(Braun & Clarke, 2012, 2014). After an initial overarching analysis, the data were divided into 

the following initial themes and codes: 

1. Sociality of chronic pain  

i. emotional and physical support;  

ii. accountability;  

iii. encouragement;  

iv. check-in, monitoring and feedback;  

v. conversations and distractions 

2. Role of technology  

i. personalised care;  

ii. reminders and planners;  

iii. cognitive load and trust;  

iv. awareness and knowledge 

3. Pacing and planning  

i. cautions and worries;  

ii. reassurance;  

iii. grounding;  

iv. confidence;  

v. know-how;  

vi. planning strategies;  

vii. difficulties;  

viii. breathing 

4. Self-reflection and monitoring  

i. challenging vs not challenging;  

ii. dangers;  

iii. awareness;  

iv. emotions and monitoring 

This initial analysis was then subsequently refined under two different concepts developed in 

two separate analyses. The first analysis focuses on the self-reporting process and experience, 

and this analysis has now been published in (Bi et al. 2021), and an overview is given in Section 

3.1. The second analysis targets the multiple timescales of movement decision making, and is 
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currently being prepared for publication, and a succinct overview is sketched out in Section 

2.2.2. 

2.2.2 Movement as decision-making (Buono et al., in prep) 

This analysis was aimed at providing deeper insights (beyond previous work such as Olugbade 

et al. 2019; Singh et al. 2017) to better understand the strategies deployed and the challenges 

faced by participants in carrying out everyday activities. We framed the analysis around the 

concept of decision-making: while for people not living in CP, movement in such scenarios is 

almost instantaneous and unconscious (for experimental evidence, please see: Libet et al., 

1983; D’Ostilio & Garraux, 2012), the interviews highlighted that people with CP tend make 

several explicit assessments before and during execution of movement, e.g. should I move at 

all or not? how should I move? what (body part) should I move and at what speed? etc.  

Our analysis showed that such decision-making moments happen at two distinct, but 

intertwined, timescales – the micro-timescale of the ‘now’, and the macro-timescale of the 

entire day and/or week. As far as the former is concerned, good decision-making seems to be 

enhanced by pacing, whereas in the latter, planning seems to be of paramount importance. 

In terms of strategies used in decision making, participants reported a heightened capacity 

based on grounding and mindful techniques (Mason & Hargreaves, 2001; Nielson et al., 2013) 

to strategise for real-time decisions, with particular importance given to body scans, self-

reporting and correct breathing tempo. These tools heightened the actor’s capacity to 

connect to their body, be aware of its conditions, and accommodate its needs accordingly. 

For longer-term decisions, participants stressed the importance of strategic planning, 

reporting how it follows similar principles of detached awareness (describing the ability to 

make adaptable projects and set achievable goals) and of foregrounding needs and challenges 

in advance.  

However, while participants seemed all fairly aware of how to improve their decision-making 

abilities, and thus verbalised about the above strategies extensively, they all highlighted 

challenges to their actual incorporation of these strategies in their routines. Such challenges 

comprised for instance: 1) a general lack of trust of their own judgements and intuitive 

assessments gained through grounding; 2) difficulties in re-adjusting plans on the go; 3) lack 

of awareness of when pacing and planning is particularly needed; 4) cognitive toll these 

strategies take on the person in pain. 

The analysis further clustered together responses and comments which covered participant 

discussion of how technology could aid in resolving some of the challenges posed by pacing 

and planning, thus proving itself a support for decision-making. In particular, the data 

highlights that participants envisioned a system that could prompt them with reminders to 

pay attention to their bodies, their breathing, etc. when this is most needed (e.g. when 

expecting pain, worried, or distracted, etc.). Such reminders would aim to enhance the user’s 

ability to make strategic decisions, but not impose a way of doing on the user. In fact, all 
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participants strongly advocated for solutions which would maintain and enhance their sense 

of agency. Furthermore, participants described the usefulness of a system which could also 

aid them at the macro-timescale, for instance a smart planner which would be able to make 

recommendations (e.g. postponing an activity, splitting it into chunks, carrying something out 

for a shorter time, etc.) based on the user’s levels of pain, confidence, emotional state, etc. 

2.3 Descriptive Statistics 

In this section, we give an overview of the distribution of activities and labels in the 

EmoPain@Home dataset. 

2.3.1 Data Instance Definition 

To enable quantitative analysis, we segmented the dataset by defining the one-minute time 

window preceding each self-report as a data instance. Thus, for each participant activity 𝑎𝑘 

we extracted 𝑛𝑘 instances {𝑚1
𝑘, 𝑚2

𝑘, … 𝑚𝑖
𝑘, … , 𝑚𝑛𝑘

𝑘 } such that 

𝑚𝑖
𝑘 = {𝑎𝑡𝑖𝑘

−60
𝑘 , 𝑎𝑡𝑖𝑘

−59
𝑘 , … , 𝑎𝑡𝑖𝑘

−1
𝑘 } 

where 𝑡𝑖𝑘
 is the time (in seconds) of the ith ESM self-report 𝑙𝑖

𝑘  of 𝑎𝑘 , 𝑘 𝜖 {1, 2, … , 𝐾}; and 

instance 𝑚𝑖
𝑘 is specified by:  

 the kinematic data captured for the given participant in activity 𝑎𝑘  particularly the 

data recorded between second 𝑡𝑖𝑘
− 60 and 𝑡𝑖𝑘

− 1,  

 the (pain, worry, and confidence) experience labels for time 𝑡𝑖𝑘
 based on the 

participant’s self-report at that time, 

 the activity label for 𝑎𝑘,  

 the level of challenge self-reported by the participant for activity 𝑎𝑘, and 

 the id for the participant. 

We excluded participant activities where the time of the self-report was not noted, e.g. when 

the participant did not say it out loud (or it could not otherwise be heard) at the time of the 

experience itself, or during the unsupervised activities. 

2.3.2 Distribution of Data Instances by Activity type 

As can be seen in Figure 5, there is a wide variety of activity types (26 in total) in the dataset. 

While most of the activities are exclusive to individual participants (e.g. only P8 had a yoga 

activity), a number of activities are common to 3 or more participants. For instance, 5 

participants had changing bed sheets activities, and 3 participants had bathroom cleaning 

activities. However, in general, most of the activities are represented by fewer than 20 data 

instances.  

These have implication for computational modelling of the data instances. First, it will be 

challenging to build a model that generalizes to unseen participants who carry out activity 

types not represented in the training set. Second, the disproportionate number of activity 
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types (disproportionate to the total number of data instances) already introduces a peculiar 

level of complexity to the learning process for the model given that the expression of target 

experiences (e.g. low level confidence) can vary not only across people but further across 

activity types for each person. 

 

 

Figure 5. Distribution of data instances in the EmoPain@Home dataset by activity type. 

 

2.3.3 Distribution of Data Instances by Experience Labels 

For pain experience (Figure 6 top-left), most of the data instances have mid level values with 

a peak in number of instances at pain level 4. Most of the data instances are samples from 

activities that the participants reported that they typically find challenging, and although the 

highest level of pain reported for instances from the non-challenging activities was only 6, 

instances from the challenging activities had pain level as low as 0. 

For worry experience (Figure 6 top-right), the distribution of data instances is right skewed 

with a peak at worry level 2. As with pain, instances from the challenging activities had all 

(integer) worry levels from 0 to 10 whereas instances from the non-challenging activities did 

not have worry levels higher than 5. 

Confidence experience (Figure 6 bottom), similar to the finding for worry, has a skew on the 

positive side with its peak at 4. Instances from the challenging activities have confidence 

labels between the two ends of the confidence scale (i.e. between 1 and 5), while instances 

from the non-challenging activities have confidence labels between 3 and 5. 
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To further understand the variability of each experience label within session, we plot the 

given experience label separately for each different participant session activity. Figure 7, 

Figure 8, and Figure 9 show the variabilities for pain, worry, and confidence respectively. The 

plots suggest that there is higher variability in the challenging activities for all three labels. 

The plots additionally show differences in the range of values across participants 

 

 

Figure 6. Distribution of the data instances in the EmoPain@Home dataset by experience labels. 
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Figure 7. Distribution of pain levels of data instances in the EmoPain@Home dataset by participant activity per session.  

 

Figure 8. Distribution of worry levels of data instances in the EmoPain@Home dataset by participant activity per session. 
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Figure 9. Distribution of confidence levels of data instances in the EmoPain@Home dataset by participant activity per session. 

3 What is the Ground Truth? 

3.1 Chatbot opportunities for rich continuous labelling of pain experience in 

ubiquitous settings (Bi et al. 2021) 

Building systems that recognize how a person feels requires, or at least benefits from, having 

a dataset that is fully or partially labelled (i.e. ground truth to be modelled). Gathering the 

ground truth in ubiquitous settings is not an easy task, as it is generally not possible to simply 

use observers to label the data post recording as activities in everyday settings cannot be 

easily and/or fully captured using video cameras. Hence, self-reports are the typically used 

approach. However, asking people to self-report is generally considered quite demanding and 

disruptive. In the context of CP, the continuous focus on pain and negative states may further 

lead to exacerbate disengagement with physical activity [Olugbade et al. 2019]. In this study, 

the interview data from the EmoPain@Home dataset have been analysed alongside a dataset 

comprising long-distance runners (which was reported in deliverable D4.10), with a focus on 

the opportunities that self-reporting provided in both instances. In particular, our data 

highlighted how self-reporting could be obtained through a conversational agent, such as a 

chatbot, which could further enhance the element of companionship which participants in 

both studies seemed to highlight; in turn, such sense of companionship could stimulate 

participants to self-report beyond numerical (pain) ratings. In doing so, a conversational 

approach to labelling tasks could lead to more fine-grained and richer ground truth combining 

required ratings with further qualifiers of one’s experience. Such richer self-report may lead 

to richer datasets annotation for machine learning while the chat-based self-reporting 
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becomes a useful activity to participants in longitudinal data collection activities. The 

following considerations summarise the content of a published paper presented at ICMI 2021 

– Workshop of Automatic Assessment of Pain (Bi et al. 2021). 

3.1.1 Leveraging companionship towards richer labelling and maximising subjects’ benefits 

First, participants in the EmoPain@Home dataset highlighted how self-reporting allowed 

them to have a better grasp of their present condition. In particular, they felt that the voice-

based interactions underpinning self-reporting facilitated a sense of immediacy and 

accountability, leading to a feeling of being paid attention and cared for. Second, they often 

did not limit themselves to just reporting numerical/ordinal values as instructed, but rather 

presented small exegeses regarding the reasons behind the values provided (e.g. “my pain is 

at this level right now because I have just moved in this specific way”). In this sense then, the 

social element provided by the physical presence of a human asking participants to self-report 

seemed to provide important benefits in two directions. On the one hand, participants felt 

compelled towards providing additional and contextual cues regarding their reports, which 

could be leveraged by machine learning (ML) specialists towards richer ground truth and 

more precise labelling. For instance, such secondary, contextual and experiential data could 

be analysed to further validate the reliability of numeric self-report – i.e. checking for 

consistency and correlation between self-reported scalar values and semantic meanings of 

the verbalisations. They could also be used to create ML-based models that can differentiate 

between for example different types of pain sensations, location of pain or capture the 

relationship between pain and anxiety levels (Olugbade et al. 2019b; Rivas et al. 2021). On 

the other hand, and circularly, such more fine-grained analyses (only emerging insofar as a 

sense of social companionship was felt) allowed participants to more clearly benefit from self-

reporting: self-reporting allowed them to engage in physical activities equipped with 

heightened knowledge and attentional focus. Moreover, such a stance allowed them to see 

self-reporting in a more positive light – not as something boring and cumbersome, but rather 

as helpful and stimulating.  

3.1.2 From human presence to machinic presence: chatbot opportunities and challenges 

From an initial analysis of the data presented above, a chatbot with self-reporting capabilities 

emerged as a valuable possibility to foster and heighten the sense of social companionship. 

First, a chatbot would retain the elements of immediacy and accountability participants said 

drove their perceived benefits – they felt that the fact that they were asked in the moment 

allowed them to be more mindful, and the fact that they had to report to someone/something 

listening made them more thoughtful regarding their judgements. Second, a chatbot would 

be able to prompt speech-based cues with a natural-sounding voice and following natural and 

interactive speech patterns.  

Our analyses are however mindful of the fact that self-reporting cues in the EmoPain@Home 

study were provided by a human actor (i.e. the researcher), and thus the question of whether 
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or not participants would grasp the same sense of social companionship from a 

chatbot/prompting system is an open one. A growing body of work (e.g. Araujo et al. 2018) 

suggests that chatbots, if well designed, do lead to be perceived as having some form of 

agency, thus allowing people to engage in useful conversations regarding their issues and 

problems (e.g. applications for supporting the management of mental health). Our analysis in 

this sense pinpoints some important preliminary remarks made by participants, which pose 

the question of what design practices should be of paramount importance when designing a 

chatbot system which mimics agency. As a matter of fact, most participants seemed uncertain 

about replacement of the human prompts with a technical solution – citing in particular how 

they would not form social relationship/bond with a chatbot. More interestingly however, 

such dismissal of a technological replacement was attributed not to the artificial nature of a 

chatbot per se, but rather because they felt a chatbot could not efficiently engage in small 

talk with them, beyond merely asking them to self-report every minute. Participants in this 

sense recognised that the sense of companionship at the basis of the heightened benefits of 

self-reporting did not stem merely from the (virtual) presence of another human, but rather 

from relaxed non-functional chat talk between participant and researcher during the activity 

sessions. To clarify, these conversations were never focused on the activities at hand (e.g. 

“why are you hoovering this way?”), nor was it a request for further elaboration upon the 

self-reporting (e.g. “why is your pain higher now?”), or suggestions regarding movements 

(e.g. “maybe you should wash the dishes in this way”). Rather, they often engaged in small 

talk around trivial topics, e.g. the weather, their days, common interests, news, etc. What 

participants seemed unsure of then is whether or not a machine would be able to replicate 

and take part in such trivial conversation.  

Further work will be needed to devise and design a chatbot solution that does not simply 

prompt participants to self-report, but which is also able to naturally engage in conversation 

that might go beyond self-reporting – because the perceived benefits of said system seem to 

strongly rely on such trivial conversational dimensions. Before that, and in order to achieve 

that, future studies will necessarily seek to more properly understand what would count as 

‘small talk’ (i.e. conversations which are not cognitively taxing, as they would take away from 

task completion, but that still afford the formation of some kind of sociable relationship), as 

well as what elements of the conversations participants had with the researcher helped in 

the process. A critical evaluation of the data collected will be carried out in early 2022: all 

conversations happening during the activity phases of the sessions will be analysed and 

summarily clustered, in order to better understand the kinds of topics these conversations 

veered towards.  

3.2  Observational Study with Physiotherapists (Williams et al., in prep) 

People with chronic pain develop ways of moving in order to avoid or mitigate pain or 

anticipated strain or injury. We had previously explored such pain behaviours with machine 

learning (e.g. Wang et al. 2019), but here sought to enrich our understanding and achieve 
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better integration across movement by collecting descriptions by pain-experienced 

physiotherapists of videoed standard movements by people with chronic pain. We asked 

specifically about protective ways of moving called ‘guarding’, and about ‘flow’ of the 

movement, here loosely conceptualised as an activity state in which skills matched the 

challenge, with timeless awareness of the movement but without self-conscious control 

(Nakamura & Csikszentmihalyi, 2002). Both these fit the possibilities envisaged in a review by 

Sterling and Keefe (2021) of the opportunities offered by digital technology in investigating 

mechanisms associated with pain and disability. We also asked physiotherapists whether and 

how they could use the motion capture output from the same patients, represented in a stick 

figure. An overview of the aims and protocol design of the study was reported in interim stage 

as in deliverable D4.4. Here, we provide a description of the methods and report the findings 

of the study. 

3.2.1 Methods 

The transfer of this study from in-person plans to remote interviewing, necessitated by the 

onset of the coronavirus pandemic, required a change to ethics permission and imposed a 

delay in the start of recruiting. Seventeen of the 18 pain-specialist physiotherapists invited 

agreed to be interviewed remotely on Microsoft Teams, but the recording of one failed so the 

final sample was 16 UK physiotherapists. They had worked in chronic pain for a mean of 10 

full-time years (adjusting for part-time work and career breaks); all spent at least half their 

time working in chronic pain currently, 12 full-time. Interviews were transcribed and 

independently analysed by two researchers. 

Each physiotherapist observed eight video clips of people with chronic pain performing 

movement instances from a larger sample; the physiotherapist watched two people each for 

reaching forward with arms horizontal in standing position, bending down towards the toes 

in standing position, standing from sitting, and sitting from standing. All these movements 

can be challenging for people with chronic low back pain. The videos were from the EmoPain 

dataset (Aung et al. 2016), chosen for the quality of the video, and to provide as diverse as 

possible of patients and pain-related behaviours. Each video (most between 10 and 20 

seconds) was played multiple times to enable in-depth description of the movement. Videos 

were randomly assigned across physiotherapists, so each video was described by a minimum 

of four and a maximum of eight physiotherapists. 

Each physiotherapist first watched each video, and then was asked questions about the 

video, which was repeated while the physiotherapist answered questions. 

1. What do you notice seeing the whole movement? 

2. How would you describe it? Stiff? Slow? Guarded? Interrupted? Cautious? 

3. At what point do you start to think ‘this person has difficulty? has pain? [The 

participant watched the video and said “now” at the point where they first identified 

a problem.] 

4. Do particular behaviours trigger that thought? 
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5. Does the way you see the movement change from that point, or is it just an event in 

the whole movement? 

6. Would you describe the movement as having ‘flow’? 

7. What (single piece of) advice do you think would change the movement? 

After completing the commentaries on the videos, physiotherapists were shown on computer 

screen the output of the motion capture of two of four of the patients doing the movements 

shown in the video (see Figure 10). Where possible, one of the displays showed the same 

patient doing the same movement as that physiotherapist had seen on video, otherwise 

selection was random. The displays could be rotated through 360 degrees. Physiotherapists 

were asked whether the display could be clinically useful, and their answers were recorded 

and transcribed. 

Figure 10. Still from mocap output of movement 

 

The data were subjected to two forms of analysis. First, a grid was constructed of each patient 

for each movement, and the responses of the different physiotherapists to the same 

patient/same movement were compared. Second, the entire transcripts were analysed 

thematically by two independent researchers, one the interviewer, and the other not involved 

in the process of the study. 

3.2.2 Results 

The two qualitative analyses largely agreed so the two versions have been combined here. 

Guarding: Guarding was answered fairly categorically, sometimes qualified as only for part of 

the movement, or part of the body, or emphasised, as in “very guarded”. These were coded 

as 0 for not guarded, 1 for partial guarding (part of body or part of movement), 2 for definite 

guarding, and 3 for very marked guarding. 
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Agreement on guarding was not high, with four instances of complete agreement, three of 

them on no guarding, and one on guarding. Five further instances were rated in only two 

adjacent categories of rating, and seven instances in three adjacent categories. The remaining 

six (with four to eight physiotherapists in each) were clear disagreements. 

Although agreement was moderate at best, physiotherapists were very consistent in how 

they described guarding so no constituent themes were extracted, but their understanding of 

guarding is described here. Guarding was usually distinguished from stiffness, slowness, and 

bracing. Although guarded movements often appeared stiff and slow, physiotherapists 

distinguished between stiffness due to physical condition from guarding: “rather than him 

himself physically being stiff, it's the guarding that makes it look so stiff.” [PH15] 

Physiotherapists often used terms such as ‘cautious’, ‘protective’, ‘avoidant’ in association 

with their opinion on guarding: “Guarding is … people look reluctant to do it: they’re cautious 

and apprehensive about doing it” [PH10]. Physiotherapists often specified the part of body 

that was not moving as expected, most often the spine or part of the spine, and on other 

parts of the body that appeared to compensate for the noted restriction: “it looks like he's 

quite cautious with the spine there - and that's why maybe he's compensating with his legs.” 

[PH5]. There was an implication of habitual or even deliberate caution, and breath-holding 

was reported several times as an indication that the patient viewed was focused in an anxious 

way on the movement. 

Flow: The question for each video “does this have flow?” was answered often with a clear 

“yes” or “no”, but also with a qualification that there was some flow, or flow for part but not 

all of the movement, or flow in some parts of the body but not others. These were coded as 

0 for no flow, 1 for some flow, and 2 for “yes”, and agreement calculated. The overall level of 

agreement for reach-forward was 67%, for sit-to-stand 65%, for stand-to-sit 59%, and for 

forward-bend 74%. There were three cases, all of no flow, with total agreement. Four themes 

were extracted from physiotherapists’ descriptions.  

The first theme was overall understanding of movement: whether or not a movement was 

judged to have flow, physiotherapists contextualised the movements they observed within 

an understanding of the particular patient and the experimental setting. More certainty in 

their judgements would have required information about or from the patient, or the 

opportunity to observe more closely: there was almost no reference to normative movement.  

The second theme, restriction of movement, emerged where there was no flow or some flow. 

Where there was judged to be no flow, restriction was described in terms of rigidity, stiffness, 

or balance; “he keeps his back quite arched and quite rigid” [PH3], or of there being very little 

movement in the spine or joints. Where there was some flow, comments often included 

contextualisation of the restriction, as in the first theme. “He definitely looks like he's trying 

not to… aggravate his back… he obviously can stand up without using his arms.” [PH10] 

However, as identified above in the distinction between guarding and stiffness, rigidity was 
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more often implied as a protective, even deliberate, lack of movement, whereas stiffness was 

attributed to age or limited flexibility. 

Related to the theme of restricted movement, and mainly occurring for no flow or some flow, 

was a third theme, flow as tempo. Thus a movement performed slowly could still have flow, 

depending on its other qualities: “She's actually got quite, you know, quite good movement. 

She's just… she's slow in doing it.” [PH12]. Time and timing of movements was an important 

dimension of judgement, but without reference to normal movement speed, rather to 

hesitation (“moving with hiccups” [PH13]), or uneven tempo (which was often associated with 

judgements of guarding), both often interpreted as unwillingness to do the movement. This 

theme also encompassed a few judgements concerning effort (where the movement 

demanded more of the patient than the patient was confident of performing), or movement 

performed too fast and appearing “jerky”. 

The last but crucial theme is flow as natural, occurring mainly when physiotherapists judged 

a movement to have flow. Flow was sometimes described in aesthetic terms (“lovely”), or as 

not deliberate or consciously controlled: “intuitive”, “happy”, “confident”, “comfortable”. 

Other descriptions used terms that implied an even speed with no hesitation or sudden 

change in velocity (“smooth”, “fluid”), or normality of speed or less often of range (“moving 

freely and able to reach up and move to a point that would be expected” [PH16]). By contrast, 

no flow or very little flow was often described in terms of awareness, deliberate protection, 

guarding, consciousness of movement, conscious control of movement, or avoidance, albeit 

contextualised in the patient’s age, build and condition. These terms did not appear where 

some or good flow was described. However, the first theme is pertinent here: the judgement 

that the movement had flow did not require faultless movement, but a movement could show 

some difficulty while still having a naturalness and ease that made for flow. “OK, there's also 

a tiny bit of an area that he is trying to avoid as he does it, but on the whole it's a much more 

fluid movement.” [PH12]. A further element, beyond the movement itself, was that 

movements judged to have flow expressed confidence in ability to perform the movement, 

even in an adapted form. This confidence was not a self-conscious performance, but an in-

the-moment intuitively guided, rather than controlled, act. Flow seemed to be about having 

control while allowing the body to explore. Some of the advice associated with judging a 

movement not to have (much) flow was just “to let go”. 

Mocap representation of patients’ movement: Physiotherapists’ answers to questions about 

the usefulness of the animated motion capture output, shown in an interactive presentation 

that they could rotate and expand, were influenced by their overall feelings about 

computerised visual information compared to direct clinical contact, particularly in the 

context of working remotely during the COVID pandemic. Some were enthusiastic – the 

figures were “fun” and “cool”; at the other extreme, “I hate this virtual world that we’re living 

in right now” [PH9]. Only two of the 15 physiotherapists asked saw no advantage of the 

motion capture output over seeing a patient in person or on video.  
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The other 13 physiotherapists, while clear that the motion capture output could not 

substitute for the patient, could all see benefits for physiotherapist and/or for patients, from 

finding that it provided independent information that was clearer than on the video to feeling 

that it added little. Of those who said that they found extra information of value in the stick 

figure movement, one felt that a side view (the motion capture figure could be rotated) was 

a particular help, and several mentioned being able to see ‘quality of movement’ without 

distractions of the expressive person as an asset: “So absolutely you can see in this picture 

that there's limited flexion at the hip joints, for example. So yeah, it does give you some 

information… you can certainly see speed of movement, you can see order of movement 

within the body.” [PH16]. Those physiotherapists who were less enthusiastic held that the 

information of most value to them came from asking the patient about his or her fears, 

beliefs, and goals, and from facial expression and breathing, rather than from observing the 

patient’s movement. Benefits for patients were identified by eight physiotherapists, mostly 

about enabling better awareness of movement and movement patterns and habits by sharing 

the motion capture output with the patient, “I could see patients could be quite interested in 

that, because it's not threatening” [PH8], but also feedback of progress, with patients 

“enjoying seeing the change” [PH4]. Two physiotherapists suggested additional uses for the 

motion capture information in sports injury rehabilitation. 

3.2.3 Discussion 

Although physiotherapists were in many instances willing only to make judgements 

conditional on assumptions about the state of the patient in the video, being unable to 

interact with the patient as they would do clinically, they confidently identified both guarding 

and flow in the movements they observed on video.  

For guarding, although estimated between-physiotherapist agreement was only moderate, 

their elaborations were highly consistent: guarding referred to reluctance or caution in 

movement, distinct from stiffness, an inference about patients’ physical condition, and from 

slowness. Exactly how guarding intention was expressed behaviourally requires further 

exploration but justifies our focus on it separately from other ‘pain behaviours’. 

Flow also only showed modest agreement between physiotherapists, but interestingly was 

not incompatible with some stiffness, slowness, nor even with guarding, although the 

presence of guarding was usually associated with judgements of limited flow at best. 

Attribution of flow appeared to be a more holistic judgement of the movement at a higher 

level than that of guarding. The four themes extracted referred to individual context of the 

judgement, to restricted movement, to a smooth tempo across phases of movement, and to 

a naturalness and unselfconsciousness that is close to definitions and descriptions of flow in 

the literature. Although there was some reference to how a movement might be performed 

by someone without pain, judgements were not normative. It may be that in the context of 

chronic pain, flow for some respondents represented a relative lack of any protective 

behaviour that might interrupt or disrupt it, while still being slower than normal.  
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The relationship of flow to tempo of movement was particularly intriguing and constituted an 

important part of physiotherapists’ judgements. Flow appeared to be characterised by the 

absence of sudden changes in velocity of movement, or of complete stops, although the 

whole envelope of some moves involved acceleration and deceleration but with seamless 

transitions. There had to be a harmony between different parts of the body and of the 

movement. The movement could be performed slowly, slower than ‘normal’, yet still have 

flow. Incompatible with flow were stops, pauses, and hesitation, often to take more control 

of a movement in a cautious or less confident way, suggesting anxiety either about capacity 

to complete the movement or to do so without exacerbating pain unduly. Further, restricted 

breathing appeared to be related to judgements about flow and uneven tempo, although this 

would bear more detailed investigation using specific sensors. Both monitoring breathing and 

using it consciously were recommended as ways to increase fluidity of movement, and to 

restore rhythmic harmony.  

This study had several limitations. One was the absence of background information on the 

patient shown in the video, and of the possibility of closer observation that would reveal facial 

expression and breathing patterns sought by physiotherapists to contribute to their 

judgements. Wearable sensors, of course, could render filming unnecessary and operate in 

people’s own environments and chosen activities. Quantitative judgements of guarding and 

flow (using numerical rating scales) would have allowed better calculation of dis/agreement, 

but might have disrupted the descriptions elicited from physiotherapists. A further point is 

that most of the participating physiotherapists were known to the interviewing author, and 

some were past or current colleagues; all were aware that the author was a psychologist, and 

this may have inhibited some types of comment and stimulated others.  

How could these findings inform the design of technical systems to support people with 

chronic pain in moving more easily, more confidently, and with less pain and anxiety? 

Guarding is a possible target for further training of algorithms, since if it is related more to 

the individual’s beliefs and expectations, consistent with many other studies in chronic pain, 

it needs cognitive not physical challenge. This could be supplemented by attention to breath-

holding that a majority of physiotherapists looked for as a sign of anxiety about the 

movement. Fears and worries about movement causing pain, strain or injury are a major 

contributor to guarding, and a system focused only on ‘correct’ or normative movement will 

be seriously limited by failing to address these.  

Work is progressing to identify whether the information provided here will provide sufficient 

ground truth for machine learning of guarding and of flow. It confirmed for us the importance 

of integrating emotional state and beliefs into understanding movement, as the 

physiotherapists did, although it may require more granular information than collected in this 

study, or confirmatory testing of provisional hypotheses on different patient videos from 

those used here. Emotional information is inherent in movement quality, providing an overall 

narrative for which flow emerges as a useful concept. It clarified for us that flow does not 
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represent either normal speed of movement or constant velocity, and (although 

physiotherapists differed on this) can even be compatible with some protective behaviour.  

Experienced physiotherapists are a scarce resource compared to the prevalence of chronic 

disabling pain (Fayaz et al. 2016), but those trained in cognitive and behavioural methods 

applied to pain can provide flexible and relevant prompts and help in the moment, 

personalised to the patient’s age and state, whether exploring patients’ fears or directly 

facilitating physical movement. Additionally, in the predictable and safe setting of the 

physiotherapy clinic, patients may find it much easier to experiment and to take (what they 

perceive to be) risks with movement than they do when alone in their own homes. 

Technology can be designed to extend the support and even intervention provided by the 

pain-specialist physiotherapist into the patient’s own environments, available at any time. 

Using findings from this study, such a system might be trained to pay more attention to 

interruptions, hesitations, and abrupt changes in velocity of movement. It is helpful to identify 

here the clear association between flow and a movement having its own rhythm and 

harmony, rather than between flow and speed. A chatbot might prompt users to consider 

what fears or expectations they had about a movement, before or during it, and rather than 

trying to correct elements of a movement, instead suggesting modifications in order to build 

up to the full movement from an easier version and challenging or questioning fearful 

expectations. It might also pay attention to breath-holding or changes in breathing likely to 

be indicative of anxiety or apprehension. It could encourage exploration of movement in a 

fluid and even playful way. 

4 Modelling Approaches for Continuous Pain Movement Data  

4.1 Exploring Recurrent Neural Networks for Modelling of Protective Behaviour 

(Wang et al. 2021) 

We show for the first time that neural networks based on long short-term memory (LSTMNN) 

(Hochreiter and Schmidhuber 1997; Gers et al. 1999) support activity-independent 

recognition of pain-related behaviour. We also explore and identify through experiments, 

statistical analysis and reflections on pain behaviour characteristics based on the EmoPain 

dataset, critical parameters/processes for data segmentation, label definition, and data 

augmentation. This work is published in (Wang et al. 2021b) and has informed studies 

reported in previous deliverables as well as further modelling reported in Section 4.2. 

4.2 Further Modelling of Protective Behaviour: Integrating movement and muscle 

activity data (Cen 2021) 

Here, we present three new architectures explored for protective behaviour. This set of 

architectures build on the Hierarchical Human Activity Recognition and Protective Behaviour 

Detection (HAR-PBD) architecture (Wang et al. 2021) described in deliverables D1.7 
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(theoretical background), D3.7 (architecture description), and D2.2 (modelling results), by 

integrating muscle activity data with body movement data in the PBD module of the 

Hierarchical HAR-PBD architecture. This work has been done within the MSc student project 

of Guanting Cen (Cen 2021). 

4.2.1 Hierarchical Human Activity Recognition and Protective Behaviour Detection (HAR-

PBD) v2 Architectures 

The PBD module of the original Hierarchical HAR-PBD architecture (Hierarchical HAR-PBD v1) 

takes in as input data 3D positions of anatomical joints over a period t1 to t2 and the type of 

activity being performed during the period. The PBD module of the Hierarchical HAR-PBD v2 

architectures include electromyography (EMG) sensor data as a third input. 

Similar to the Hierarchical HAR-PBD v1, the v2 architectures are based on graphical 

convolution networks (GCN) (Kipf and Welling 2017) and LSTMNNs. In the PBD module of the 

v1, for each time ti, each joint is represented as a node specified by the 3D position of the 

joint together with the activity type being performed at ti, and all joints are nodes in a graph 

with an adjacency matrix defining direct connections between anatomical joints. 

v2-early architecture: The first of the v2 architectures is an early fusion model where a new 

node representing each location of recorded muscle activity is added to the same graph, and 

each of these nodes is specified by a scalar value representing the activity of the muscle at 

time ti. The anatomical location of the muscle determines the update to the adjacency matrix 

to include the corresponding muscle node. For example, where the node for a right trapezius 

muscle (upper back) is included in the graph, the adjacency matrix reflects connections from 

the right shoulder and the top spine joints to the muscle. In order to have similar 

dimensionality as other nodes of the graph, the muscle nodes are padded to a 3D value; the 

activity type is also included as the fourth dimension of the node. 

v2-late architecture: The second v2 architecture is a late fusion model in which there are two 

different PBD modules (and so two different graphs) for the joints position data and muscle 

activity data respectively. The predictions for both modules are then concatenated and input 

to a fully connected neural network for the final classification. 

v2-mid-level architecture: The third v2 architecture is a mid-level fusion model. In this 

architecture, the joints positions and muscle activity data have separate GCNs as well as a 

shared fully connect neural network. At each layer, the GCN for the joint positions data and 

the GCN for the muscle activity data both feed into a common network. Figure 11 illustrates 

the GCN structure of the PBD module of this architecture. The output for each layer i of the 

shared network is defined at time t as: 

ℎ̂𝑡
𝑖 = 𝜎 (𝑊𝑖 (ℎ̂𝑡
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𝑖
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where (.) is the activation function, ℎ̂𝑡
𝑖  is the output of shared network layer i at time t, ℎ𝑡

𝑖
 

𝑚  

is the output of the ith layer of the GCN for the mth modality at time t, and Wi is a matrix of 

trainable weights. 

In a more developed version of the architecture, the output of each shared network is fed 

into an attention submodule before being passed to the next shared network layer. The 

output of the attention submodule is specified as Oi: 
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and 𝑊𝑄, 𝑊𝐾, 𝑊𝑉 are trainable weights. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.2 Dataset and data preparation 

The EmoPain dataset (Aung et al. 2016) consists of 3D joints positions data and muscle activity 

data from four locations. The data was captured from both participants with chronic pain and 

healthy participants while they performed exercise movements such as sit-to-stand, but only 

data from people with chronic pain were used in the experiments reported here. The dataset 

Figure 11. The GCN structure of the PBD module of the Hierarchical HAR-PBD v2-mid-level architecture 
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contains time-continuous protective behaviour annotations from clinicians. See (Wang et al. 

2021) for further details about how a single protective behaviour label is derived from the 

annotations for six different behaviour categories: guarding, hesitation, bracing/support, 

abrupt action, limping, rubbing or stimulating the affected region 

Each captured session in the EmoPain dataset is a sequency of activities (e.g. sit-to-stand, 

forward reach) for a single participant and there are multiple sessions for some participants. 

Similar to the approach of (Wang et al. 2021), a sliding window of length of 3s (180 frames) 

and 50% overlapping ratio was used to segment the sessions. A segment was labelled as 

protective if 50% or more of the frames in the segment have protective behaviour labels, and 

not protective otherwise. The same data augmentation methods used in (Wang et al. 2021) 

and additionally reported in deliverable D2.2, i.e. random dropout and Gaussian noise, were 

used. This resulted in roughly 35,000 segments in total. 

Since the difference between the v1 model and the v2 architectures is the PBD modules, the 

HAR module for predicting the activity type was simulated using the ground truth activity 

label in the experiments reported here. 

4.2.3 Parameters 

A leave-one-subject-out cross-validation (LOSOCV) method was used to understand how well 

each model generalised to unseen subjects. 

For the v2-late and v2-mid-level models where separate GCNs are used for the joint positions 

and muscle activity data, the GCN for the joint positions data is made up of 3 layers each with 

16 units while the GCN for the muscle activity data has 3 layers with 6 units each. 

For the v2-early and v2-mid-level models that have a single LSTMNN for both types of data, 

the LSTMNN is made up of 3 LSTM layers each with 24 units, whereas for the v2-late model 

in which the two types of data have separate LSTMNNs, both LSTMNNs have 3 layers but 

while the joint positions LSTM layers have 24 units each, the muscle activity LSTM layers have 

8 units each. 

Each of the three v2 models was trained for 100 epochs. The same loss function described in 

(Wang et al. 2021) was used to address class imbalance. 

4.2.4 Results 

Table 2 shows the performance of the three v2 models for protective behaviour detection. 

We further include the performance of a compatible v1 model where the HAR is also 

simulated using the ground truth activity labels in the dataset. The results show that 

integrating the muscle activity data with the joint positions data improves the performance 

of the Hierarchical HAR-PBD architecture; however, this is only true when mid-level fusion is 

done. Further statistical analysis suggests that the difference in performance between the v1 

and v2-mid-level models is statistically significant, p<0.05 (F =7.477 and p<0.001 for difference 
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between means across the four models, and p<0.0001 for Bonferroni-corrected pairwise 

comparisons between the v2-mid-level and v1 models). Difference between the v2-mid-level 

and v2-early models was also statistically significant (p<0.001). A late-fusion is only marginally 

better than use of the joint positions data alone, while early fusion does not have any 

advantage over the v1 model based on only joints positions data. For the mid-level fusion, 

performance drops when attention mechanism is included in fusing the joint positions and 

muscle activity embeddings, although it still outperforms the v1, v2-early, and v2-late models. 

 

Table 2. HAR-PBD v2 Results 

Hierarchical HAR-PBD 

Model 

Accuracy F1 Score 

v1 [Wang et al. 2021] 0.89 0.82 

v2-early 0.89 0.82 

v2-late 0.90 0.83 

v2-mid-level 0.93 0.88 

v2-mid-level with attention 0.92 0.86 

 

4.3 Preliminary Modelling of Pain Levels in the EmoPain@Home Dataset 

4.3.1 Feature Extraction 

We extracted 6 sets of features (see Table 3) based on previous work on automatic detection 

of pain levels, mood, and confidence in (Olugbade et al. 2018, 2019): speed, jerk, energy, 

amount of movement, minimum distance between joints, and range of joint angle: 

 For speed, jerk, energy, and amount of movement features, we further extracted 

features per anatomical joint (6 joints X 4 features = 24)  

 The minimum distance feature was on the other computed between each joint and 

the forearm as we wanted to capture self-adaptor behaviour (i.e. self-touching). We 

excluded the minimum distance for the (ipsilateral) upper arm as this is expected to 

be constant since they shared the same bone and bones are rigid objects (4 joints X 1 

feature = 4) 

 For the range of joint angle, we computed the range for the knee and hip angles (2 

joints X 1 feature = 2), with 

o the knee angle defined as the angle between the vector through the lower 

trunk and hip joints, and the vector through the hip and ankle joints, and 

o the hip angle defined as the angle between the vector through the hip and 

knee joints, and the vector through the knee and ankle joints 
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For each data instance 𝑚𝑖
𝑘 (see Section 2.3), we extracted features from two windows: 

 window 𝑐𝑖
𝑘between time 𝑡 = 𝑡𝑖𝑘

− 1 and 𝑡 = 𝑡𝑖𝑘
, which represents the time window 

of the data instance, and  

 window 𝑐𝑐𝑖
𝑘 between time 𝑡 = 0 and 𝑡 = 𝑡𝑖𝑘

, which represents the cumulative time 

from the beginning of the activity 

To extract features, we divided each window into 3 non-overlapping segments, and then 

computed the features on each segment. Thus, each data instance is represented as a 180-

dimension vector (3 segments X 2 windows X 24+4+2 features).  

 

Table 3. Features extracted from data instances in the EmoPain@Home dataset 

Feature Description 

Speed 3D speed of a given joint 

Jerk 3D jerk (i.e. acceleration over time) of a given joint, 

to capture the smoothness of movement of the joint 

Energy 3D kinetic energy of a given joint (assuming unit 

mass) 

Amount of movement The sum of the 3D displacement of a given joint over 

time 

Minimum distance between joints The minimum 3D displacement between a given joint 

and the forearm joint, to capture self-adaptor 

behaviour 

Range of joint angle The range of angles for a given joint 

 

4.3.2 Methods 

We explored automatic classification of pain into two levels: low level pain (i.e. pain less than 

or equal to 5 on the pain scale defined in Section 2.1.3) and high level pain (i.e. pain reported 

to be higher than 5). More fine-grained levels of pain could not be explored due to the limited 

size of the data, which is typical of annotated data captured in the wild from specific 

population groups, that is, beyond the general population. 

Evaluation approach: Although the LOSOCV evaluation approach used in the study reported 

in Section 4.2 is standard for assessing the ability of an automatic detection model to 

generalise to unseen subjects, as highlighted in Section 2.3.1 the differences in activity types 

across participants is expected to be significant challenge in generalising to unseen subjects 

for the EmoPain@Home dataset. Indeed, initial experiments based on LOSOCV confirmed 
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this. Thus, we followed the leave-one-out cross-validation (LOOCV) which is the gold standard 

when the aim is not to evaluate generalisation to new subjects. 

Learning algorithm: Given the high dimensionality of the feature set (n=180, see Section 4.3.1 

for details) relative to the data size, we explored the use of the Random Subspaces ensemble 

method (Ho 1998) where a random subset of the features are used to train weak learners and 

the prediction is based on an aggregate of the predictions of these learners. We used decision 

trees as the learners, and we set the features to be selected with replacement. We explored 

c=5, 10, 50, and 100 trees using a nested LOOCV. 

4.3.3 Results 

Table 4 shows the results for the pain level classification comparing four different maximum 

number of features to build each tree in the bagging classifier: n, n/2, n/5, and n/10. The 

classification performance was very high in all four cases, but as expected, the use of n (i.e. 

180) features performed the worst due to the high dimensionality. Although n/2 (i.e. 90) and 

n/10 (i.e. 18) showed slightly better performance, n/5 (i.e. 36) led to the highest F1 scores 

suggesting that it is indeed valuable to minimise the dimensionality of the input data although 

there is a bound beyond which this leads to diminishing returns. Table 5, Table 6, Table 7, and 

Table 8 present the confusion matrices for the 4 different maximum feature sizes. 

 

 

Table 4. Pain level classification results 

Maximum number of 

features to build each tree F1 score (low level pain) F1 score (high level pain) 

n = 180 0.88 0.86 

n/2 = 90 0.88 0.88 

n/5 = 36 0.90 0.90 

n/10 = 18 0.88 0.88 

 

 

Table 5. Pain level classification results for maximum number of features per tree = n 

  PREDICTED 

  Low level pain High level pain 

TR
U

E 

LA
B

EL
 

Low level pain 99 10 

High level pain 16 101 
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Table 6. Pain level classification results for maximum number of features per tree = n/2 

  PREDICTED 

  Low level pain High level pain 

TR
U

E 

LA
B

EL
 

Low level pain 96 13 

High level pain 14 103 

 

 

Table 7. Pain level classification results for maximum number of features per tree = n/5 

  PREDICTED 

  Low level pain High level pain 

TR
U

E 

LA
B

EL
 

Low level pain 99 10 

High level pain 13 104 

 

 

Table 8. Pain level classification results for maximum number of features per tree = n/10 

  PREDICTED 

  Low level pain High level pain 

TR
U

E 

LA
B

EL
 

Low level pain 96 13 

High level pain 14 103 

 

Future work will explore the relevance of each of the n features for pain classification. Further, 

we will consider other learning algorithms beyond the decision-tree based bagging classifier. 

We will additionally investigate the automatic classification of the other two labels in the 

EmoPain@Home dataset, i.e. worry and confidence. 
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