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1. Introduction 

 

This deliverable reports on the progress on the research conducted 

between M1-M30 of the EnTimeMent project with regards to the Individual 

Motor Signature (IMS) and Group Motor Signature (GMS) during complex 

and joint action execution and observation. 

This deliverable is strongly connected, also in organisation (numbering) of 

the content, to deliverable D3.1 (Phase 1), deliverable D3.5 (Joint Action), 

D3.6 (Complex Action), which is about the hardware and software tools 

used for acquiring and analysing data in the context of single, joint and 

complex actions. As such, this document focuses only on the tools of sub-

projects specific for definition of IMS and GMS and the Emotion Motor 

Signature (EMS) and contains references to other deliverables reporting 

on the D1.7 Models and Algorithms; D2.2; Results on prediction in action 

execution and observation – Phase 2, and Research Requirements D1.2). 

A plethora of research suggests that emotional and idiosyncratic content 

is best conveyed by the distal parts of the body (which bare relatively low 

energy expense cost for moving) during gross motor acts with a high 

number of degrees of freedom. Thus, plethora of research suggests that 

a specific relation exists between motion, individual characteristics and 

dimensions of emotion, which we explore in combination with multiple 

timescales approach as a part of EnTimeMent project. 

 

 



2. Data Acquisition Tools 

 

This section describes the software (processing pipelines), sensors, and 

other devices used for capturing data in four main settings of the 

EnTimeMent project: controlled lab settings, unconstrained lab settings, 

musical performance settings, and everyday (e.g., home) settings.  

Please note that the numbering of the subsections refers to numbering 

used for experimental work in D1.2 Research Requirements, to maintain 

continuity throughout the project deliverables. 

 

2.1.4 IMS in pointing task (IIT – FE) 

The abundance of degrees of freedom available during AE suggests that different joint 

configurations, as well as spatio-temporal patterns of muscle activity, can equally be 

used to reach the same behavioral goal (Bernstein 1967). Although a handful of 

kinematic solutions are biomechanically valid, everyday actions (i.e. reaching for an 

object on the floor starting from a standing posture) are usually performed via a limited 

number of possible kinematic configurations of the biomechanical chain (e.g. “ankle” 

and “hip” strategies for postural control; Horak and Nashner 1986; Berret et al. 2009). 

On the top of that, each individual carry his own robust and yet unique way of moving 

(Individual Motor Signature – IMS; Hilt et al. 2016; Słowiński et al. 2016). For instance, 

in a whole-body reaching task Hilt and collaborators (Hilt et al. 2016) showed low intra-

subject motor variability, accompanied by a large inter-subject variability. 

 

We asked naive participants to perform a whole-body reaching action which could be 

executed with numerous IMSs generally spread within a continuum between two 

“extreme” patterns (ankle and knee strategies; Hilt et al. 2016). 

 

Task 

The action execution task was replicated from a previous study (Hilt et al. 2016) 

investigating the different motor strategies when pointing towards a homogeneous 



surface and without a specific target. This protocol was chosen because it keeps free 

the subjects from external constraints (e.g. a precise point to reach) and evokes 

natural inter-subject variability. Participants were asked to perform a series of whole-

body pointing movements towards a uniform opaque curtain fixed to a wooden frame 

(2.5 tall × 1.5 m large; see Fig. 1) positioned at a 15° angle with respect to the vertical. 

The surface was a black curtain (tissue) mounted on a wooden frame, soft enough to 

prevent subjects from using it as a support when finishing the movement but 

sufficiently elastic to keep its shape and remain flat. Subjects were told that they could 

point at any position they wanted over the surface. Starting from a standing position 

and at a distance of 130% of arm’s length from the surface, subjects had to move all 

body parts with the only constraint to keep the feet fixed and to move both arms 

simultaneously. The request to move the two arms together ensured that all markers 

lay approximately along the para-sagittal plane (Berret et al. 2009) to limit the 

kinematic analysis to this plane (right hemibody in 2D coordinates). All subjects were 

able perform the task. Ten trials were run before and after the action observation 

protocol. More importantly, this protocol by avoiding external constraints (e.g., a 

precise target to reach), allows subjects to execute the movement they would 

naturally/spontaneously use (e.g., IMS). A previous study using this task observed a 

large movement variability across subjects but low intra-subject variability (Hilt et al. 

2016). Interestingly, subjects behaviors were a trade-off between the optimization of 

two distinct cost functions. The first strategy (named Ankle) limits mechanical energy 

expenditure but uses a kinematic configuration that may be risky for equilibrium 

maintenance: bending the body forward using mainly ankle and shoulder joints while 

freezing knee and hip joints (large center of pressure forward displacement). In 

muscular terms, the ankle strategy is associated with a pre-activation of the tibialis 

anterior (anticipatory postural adjustment) followed by an inhibition of this muscle later 

in the movement. The second strategy (named Knee) increases mechanical energy 

expenditure but uses a kinematic configuration that may be safer for equilibrium 

maintenance: substantial knee flexion and forward trunk bending associated with a 

backward hip displacement (limited center of pressure forward displacement). In 

muscular terms, the knee strategy implied an activation of lower-leg muscles (including 

tibialis anterior) during the movement.  

 

 



Kinematic recordings 

Whole-body movements in 3 axes (mediolateral, X; anteroposterior, Y; vertical, Z) 

were recorded using a seven cameras motion capture system (Vicon, Oxford, UK) 

sampling at 100 Hz. Eight retro-reflective markers (15 mm in diameter) were recorded. 

Markers were placed at the following anatomical locations on the right side of the body: 

the acromial process (named here “shoulder”), the lateral condyle of the humerus 

(named here “elbow”), the styloid process of the ulnar (named here “wrist”), the last 

phalanx of the index finger (named here “index”), the greater trochanter (named here 

“hip”), the knee interstitial joint space (named here “knee”), the ankle external 

malleolus (named here “ankle”) and the fifth metatarsal head of the foot (named here 

“toe”).  

 

Angular computation 

We first defined five segments: foot (from toe to ankle), shank (from ankle to knee), 

thigh (from knee to hip), trunk (from hip to shoulder) and arm (from shoulder to elbow). 

We computed then the elevation angle (angle with the gravity’s vertical) of each 

segment in the sagittal plane via the following equation:  

𝜃𝑠𝑒𝑔𝐴𝐵 =   𝑡𝑎𝑛−1 (
𝐵𝑦−𝐴𝑦

𝐵𝑧−𝐴𝑧
)  (Eq.1) 

Where 𝜃𝑠𝑒𝑔𝐴𝐵 represents the elevation angle of the segment linking A to B having for 

cartesian coordinates in the sagittal plane (Ay, Az) and (By, Bz) respectively. 

Elevation angle are constrained by the anatomical limit of each joint, and never 

reach values higher (or lower) than 2π (or -2π respectively). In 2D, knowing these 

constraints, intersegmental angles can be deduced directly from elevation angles. 

The intersegmental angle between the two segments SegA and SegB is equal to the 

subtraction of the elevation angle of SegB to the elevation angle of SegA. Elevation 

and resulting intersegmental angles are illustrated in supplementary figure 2 left and 

right panel respectively. 



 

 

Figure 1: Illustration of the computed elevation angles (left panel) and intersegmental 

angles (right panel) in the (Y,Z) plane. Angles are represented by a grey arrow. The 

sign “-“ above an arrow indicates that the angle for this final posture is negative. 

Kinematic markers are represented by black dots. 

 

IMS index 

We computed an individual action execution index (IMS index) by normalizing (z-

score) and averaging the final value of the four intersegmental angles considered. 

Considering that each joint angle has different maximal amplitude (e.g. ankle versus 

hip), the z-score normalization ensures that the final index (average of all angles) is 

not reflecting the contribution of only the joint having the largest range of motion. This 

index is a simple way to represent the final kinematic configuration of each subject 

and may thus be considered as description of the postural strategy implemented by 

each participant. 

 

IMS distances 

To complement the IMS index, we evaluated the difference/similarity between the IMS 

of each subject and the actor’s implementation of the two IMSs. To this aim, we defined 

a distance by computing the root mean squared error (RMSE) between inter-



segmental angular trajectories of the actor and each of the subjects. RMSE is 

commonly used to compute the average magnitude of the errors between 

experimental values and associated model predictions (Hilt et al. 2016). 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑|𝜃𝑎𝑐𝑡𝑜𝑟 − 𝜃𝑠𝑢𝑏𝑗𝑒𝑐𝑡|

𝑁

𝑖=1

 

All trials were time-normalized (from tstart to tend) to 100 frames. For each subject and 

each joint (ankle, knee, hip, and shoulder) we computed an averaged angular 

trajectory that we compared (using RMSE) with the corresponding angular trajectory 

of the actor in both IMSs. RMSE were then normalized across subjects (z-score) and 

averaged across joints, to obtain a unique distance value for each pairwise 

comparison between subject’s and actor’s IMSs. From this point, Dist_ankle and Dist_knee 

will refer to the distance between the IMSs of subjects and the video-stimuli 

respectively showing the ankle strategy and the knee strategy.  

Computing in this way, the distances are taking into account the whole duration of the 

movement while the IMS index refers to only the final posture (see Figure 2). There’s 

obviously some degree of overlapping variance between the two, but they are built 

using different data, potentially describing very different processes. The first one 

addressing the dynamic component of reaching the final posture, while the other 

describing the final posture only.  

Figure 2: Illustration of the different steps to compute the AE index (upper part) and AE 

distances (lower part) to ankle IMS (red) and knee IMS (blue). 

 



 

Figure 3. Final intersegmental angular values for each subject (1 to 19; ordered from 

the largest to the smaller AE index) and each joint (ankle, knee, hip, shoulder), 

averaged across AE trials (pre and post AO). For each subject, standard error 

encompasses the variability across trials and session (pre and post AO). As a 

reference, we added the corresponding value for each stimulus (IMSknee, IMSankle). No 

standard error can be computed for stimuli because they refer to one video (i.e., trial) 

of the actor. These graphs illustrate the expected large difference between subjects 

IMS and the small intra-subject variability (relatively small standard error).  



Table 1. Mean and standard error (across subjects) of the final intersegmental angles 

of the ankle, knee, hip and shoulder, extracted from the kinematics recorded in the 

action execution task pre-AO (left column), post-AO (right column). The third column 

presents the results of the permutation test comparing the values pre-AO and post-

AO of each intersegmental angle.  

Mean ±ste 

(rad) 
pre-AO post-AO Statistic 

Ankle 1.26 ±0.03 1.25 ±0.03 
p=0.69, 

t=0.41 

Knee -0.09 ±0.08 -0.09 ±0.07 
p=0.99, 

t=0.01 

Hip 0.51 ±0.08 0.50 ±0.07 
p=0.91, 

t=0.12 

Shoulder 1.43 ±0.05 1.41 ±0.05 
p=0.40, 

t=0.88 
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2.1.14 Automatic Detection in the Context of Movement with 

Chronic Pain based on Novel Multiple-Timescales Machine 

Learning Architectures (UCL) 

Please see (for more information on the method): 

Wang et al. 2021 https://dl.acm.org/doi/abs/10.1145/3463508 

 

We explored a GC-LSTM neural network, shown in Error! Reference source not 

found., which is based on GC [Kipf and Welling 2017] and LSTM [Hochreiter and 

Schmidhuber 1997; Gers et al. 1999] neural networks. Each GC network (GCN) takes 

in the joints positions at time t in motion capture data from time t=1 to time t=T where 

T is the duration of the movement sequence in frames. Specifically, the graph G of the 

network is defined as G = {𝑁,  𝐸} such that  

𝑛 =  [𝑥𝑡𝑛

𝑖 , 𝑦𝑡𝑛

𝑖 , 𝑧𝑡𝑛

𝑖 (,  𝛼𝑖)] 

where 𝑛 ∈ 𝑁, 𝑥𝑡𝑛

𝑖 , 𝑦𝑡𝑛

𝑖 , 𝑦𝑡𝑛

𝑖 =3D joint position, and 𝛼𝑖=contextual data (e.g. activity), and 

edges are defined with the adjacency matrix  

𝐴 ∈ {0,  1}𝑁×𝑁  

i.e., 1 (edge exists) where there is a direct link between two joints in the data and 0 

(no edge) otherwise. The outputs of the GCN for each time t are concatenated and fed 

into the LSTM neural network (LSTMNN) and the outputs of the LSTMNN are in turn 

fed into module of full-connected layers (i.e., a multilayer perceptron) which classifies 

its input based on the label of interest. The results of our exploration of the GC-LSTM 

network for automatic detection of multiple movement characteristics (protective 

behaviour and activity) is given in deliverable D2.2. A discussion of the rationale 

behind these experiments is provided in D1.7. 

https://dl.acm.org/doi/abs/10.1145/3463508


Figure 1. Graphical Convolution and Long Short-Term Memory (GC-LSTM) Neural Network 
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2.2.6 DuoMotion: EMS (EuroMov) 

 

Please see: 

Lozano-Goupil J, Bardy BG and Marin L (2021) Toward an Emotional Individual Motor 

Signature. Front. Psychol. 12:647704.  

https://www.frontiersin.org/articles/10.3389/fpsyg.2021.647704/full 

 

 

2.3.3  Time to sync: Emosync (EuroMov) 

Individual Motor Signatures (IMS) refers to the the idiosyncratic way each individual 

moves (e.g., Słowiński et al. (2016)). Pioneering work of Johansson (1973) put 

forward the notion of transformational invariants (Malcolm, 1953), i.e., that persistence 

in some dimensions (e.g., length, ratios) across the motion of others (e.g., global 

transformation of the local optic flow) could help observers to quickly extract person-

related properties, very relevant to socio-motor interaction context. IMS often relies on 

movement velocity as a key feature, as it is both stable across time and repetitions for 

each individual (movement similarity) and differential between individuals (inter-

individual movement difference). Differences in the way people move during the 

performance of a motor task can be captured by using 95% confidence interval ellipses 

in the similarity space (Słowiński et al., 2016). This is an abstract two-dimensional 

geometrical space minimizing distances between repetitions and individuals by using 

ad-hoc dimensional reduction techniques. Ellipses can be large or small depending on 

intra-individual variability and can be close or distant from each other depending on 

between-individual variability. The approach has proven useful in identifying IMS in 

various populations, ranging from healthy individuals to people suffering from 

schizophrenia (e.g., Słowiński et al. (2017)). It has also proven useful in various tasks 

and contexts such as in the mirror game (Słowiński et al., 2016) or during 

improvisation movement (e.g., Coste et al. (2019)), and at different distal or proximal 

https://www.frontiersin.org/articles/10.3389/fpsyg.2021.647704/full


(and more postural) parts of the body (e.g., Coste et al. (2021)). Whether IMS, {as well 

as Group Motion Signatures (GMS, inter-group movement differences), i.e., the way 

IMS are assembled together in an ensemble of individuals engaged in reaching a 

common goal during joint action}, are emotionally neutral, and whether they are of 

different shapes and locations in the similarity space when produced in various 

emotional contexts (intra-subject variability) remains open to investigation 

(see Lozano-Goupil et al. (2021), for a first evaluation of Emotional IMS). 

 

The Emosync experiment investigated the human multi-modal social synchronisation 

occurring at different time scales, and looked into emergence of GMS  during the joint 

action performance. The participants were performing a collective dancing 

improvisation task. Specifically, the task was to create complex, interesting and 

variable movements with their right hand alone and while standing in the group. The 

impact of social context as well as embodied emotions are investigated within the 

expressive gesture. Below we present tools used respectively for a heart rate and 

movement analysis in the context of IMS and GMS. 

 

Heart Rate analysis 

Apparatus 

The Trigno EKG Biofeedback Sensor (Delsys) was used to record the cardiac 

activity with the resolution of 2148 Hz. The software for acquisition was EMGworks 

version 4.7.3.0. Electrodes were placed in accordance with Delsys guidelines by 

using the modified 3-lead EKG setup under the pectoral muscles to diminish possible 

noise from muscle activation. 

Pre-processing, Filtering and Event detection 

The raw ECG data were preprocessed before the analysis and filtered from 

exogeneous effect. The chosen method was the sym4 wavelet due to its similarity 

with the QRS complex (Mallat, & Peyré, 2009). Firstly, the raw data were identified 

with the wavelet method and most of the files was correctly identified (Figure 1). The 

upper graph represents the RR-interval (sec) between two successive heartbeats. 



 
Figure 1. Example of a correct detection  

 

Then, the physiologically impossible values due to specificity of the task lower than 30 

bpm and higher than 180 were cut. Afterwards, the files were visually examined to 

detect problematic trials that needed adjustments with respect to the choice of 

parameters (Figure 2).  

 

Figure 2. Example of a poor detection. 

Overall, there were 79 problematic trials out of 1287 ECG trials in total. Next, the 

adjustments were performed manually with respect to the height of the peak and 

distance between two successive peaks (Figure 3). The improved detection was 

achieved by manual adjustment. 



 

Figure 3. Example of an improved detection  

 

Recurrence quantification analysis to compute synchronization 

No interpolation was performed during the preprocessing stage for performing the 

recurrence quantification analysis (RQA) because the interpolation has an important 

the exogeneous influence on the RQA metrics. The recurrence quantification analysis 

and its modification help to quantify the synchronisation between the time series 

presenting nonlinear characteristics (Romano et al., 2005). Parameters are selected 

for each individual time series (embedding dimensions and delay), reconstruction into 

phase space, selection of radius radius of the phase space where the behaviour / 

signal which enters this radius is considered reoccurrence, generation of reoccurrence 

plot and then proceed to calculation of metrics (such as DET, RR and MaxL). Below is 

the visualization (Figure 4) of raw data, spline interpolation 4Hz and spline 

interpolation of 20 Hz. As a result, the metric of determinism DET, which identifies the 

patterned sequence of behavior, increased from .62 performed on the raw data to .97 

and 1 to spline interpolations of 4hz and 25 Hz respectively). 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Example of reoccurrence plots. 

 

Movement Analysis – Identification of IMS/GMS 

Movement data was captured with Vicon Motion Capture technology and analyzed 

with Nexus software. Each participant had markers placed on the base of the index 

fingers, wrist, forearm and headband. The index finger markers were used to quantify 

the interactional synchrony between the participants as well as the motor signatures.  

For IMS identification and the further GMS derivation we base on the results of 

Słowiński and collaborators (2016). Specifically, the probability distribution functions 

of the performed movement velocities and then transformed them to cumulative 

distributions functions. Next, the difference between the velocities was calculated via 

the Earth Mover’s distance method. Finally, these differences were projected onto the 

abstract geometrical space for visualization. Each point within the graph represents 

one trial performed by one person. The number next to the point indicates which of the 

3 participants performed the trial.  All of the trials represented by individual points are 

englobed within ellipse. Within the Emosync experiment, the participants performed 



Solo and Group conditions. Overall, there are two ellipses to visualize differences 

between Solo and Group conditions and they are denoted with S and G respectively. 

Finally, next to the letter representing the condition, there is a number indicating 

negative (i.e., -1), neutral (i.e., 0), and positive (i.e., 1) emotions (Figure 5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Visualization of differences the IMS and GMS for different emotions. 

  

We then build upon the Słowiński’s et al. (2016) relative position errors to the 

calculation within 3 dimensions. Particularly, they calculated relative position error to 

identify the entrainment within the interaction: 



(𝑥1(𝑡) − 𝑥2(𝑡))𝑠𝑔𝑛(𝑣1(𝑡)) 

However, these measures were designed for laboratory setting of 1D oscillations and 

they are not applicable within the 3D coordinate system, where the real movement 

occurs. That is why we’ve adapted this formula to 3D coordinate system (Table 1): 

 

(𝑣1(𝑡) − 𝑣2(𝑡))𝑠𝑔𝑛(𝑎1(𝑡)) 

Table 1. Relative Velocity Error    

Triad Positive Neutral Negative 

1 0.75 0.77 0.62 

2 0.60 0.58 0.55 

3 0.61 0.61 0.48 

4 0.78 0.45 0.51 

5 0.77 0.57 0.81 

6 0.15 0.04 0.09 

7 0.59 0.45 0.37 

8 0.64 0.71 0.61 

9 0.62 0.67 0.29 

10 0.19 0.37 0.38 

11 0.63 0.56 0.39 

12 0.58 0.66 0.69 

13 0.50 0.39 0.40 
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