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1. Introduction 
 

This deliverable reports on the progress on the research conducted 

between M1-M30 of the EnTimeMent project with regards to the data 

acquisition tools and analytic (hardware and software) during complex, 

multi-agent action execution and observation. 

This deliverable is strongly connected to deliverable D3.1 (Phase 1) and 

deliverable D3.5 (Joint Action) which is about the hardware and software 

tools used for acquiring and analysing data in the context of single and 

joint actions. As such, this document focuses only on the tools of sub- 

projects specific for complex action (i.e., overlapping whole body 

coordination in a multi-agent scenario and group synchronization 

experiments) and contains references, also in organisation (numbering) 

of the content, to other deliverables reporting on the D1.7 Models and 

Algorithms; D2.2; Results on prediction in action execution and 

observation – Phase 2, and Research Requirements D1.2).  

2. Data Acquisition Tools 
 

This section describes the software (processing pipelines), sensors, and 

other devices used for capturing data in four main settings of the 

EnTimeMent project: controlled lab settings, unconstrained lab settings, 

musical performance settings, and everyday (e.g. home) settings.  

Please note that the numbering of the subsections refers to numbering 

used for experimental work in D1.2 Research Requirements, to maintain 

continuity throughout the project deliverables. 

 



2.1.10 Movement qualities in music performance (Action 

recognition in Indian classical singers) (UDurham) 
 

Introduction 

In order to explore the relationship between bodily movement and musical expression, 

we extract human pose data from videos of Indian classical singers (in the Hindustani 

khyal genre). We use the resulting movement data to train action recognition models 

to classify the musical content (the raga) and musicians.  

Information is derived from a specially recorded video dataset of solo raga recordings 

by three professional singers each performing the same nine Hindustani ragas, a 

smaller duo dataset (one singer with tabla accompaniment) as well as recordings of 

real concert performances by the same singers. Movement information is extracted 

using pose estimation algorithms, both 2D (OpenPose, Cao et al. 2021) and 3D (Lifting 

from the Deep, Tome et al. 2017). A two-pathway convolutional neural network 

structure is proposed for skeleton action recognition to train a model to classify 12-

second clips by singer and raga. The model is capable of distinguishing the three 

singers on the basis of movement information alone, and within each singers’ corpus, 

of classifying the ragas with up to 49% accuracy. 

Method 

Pose data is extracted and postprocessed: this involves selection of relevant body 

parts (ignoring leg data as the musicians are sitting cross-legged on the ground), 

interpolation of missing data points and smoothing as well as normalization to avoid 

biasing the model by the video resolution and the framing of the singers. Since the 

differences in gesturing between ragas, and between musicians, are much less 

distinguishable than movements such as walking, jumping and sitting, to enhance the 

signature that may help to identify different classes, movement velocity is computed 

from the pose data and used as an independent input. 

The MS-G3D module (Liu et al., 2020) is introduced to extract features from the 

skeleton sequences. The original input is a tensor with dimension. For 2D skeleton, 

=3 including the normalised horizontal and vertical coordinates, and the confidence 

value returned by the pose estimation algorithms. For the 3-dimensional skeleton, the 

depth coordinate is included, thus equals to 4. The number of frames for each short 

video clip denotes, here it is 300 (12-second clips at 25 fps).  is the number of key 

joints of the singer. Considering that singer is sitting in the performance, 11 out of 17 

joints are selected. 



 

 

To calculate the velocity of the movement, we first denote the coordinates of k-th 

body part in t-th frame as (𝑥𝑘,𝑡, 𝑦𝑘,𝑡, 𝑧𝑘,𝑡). And then the horizontal, vertical and depth 

velocity values are defined as 

{

𝑥̇𝑘,𝑡 = 𝑥𝑘,𝑡 − 𝑥𝑘,𝑡−∆

𝑦̇𝑘,𝑡 = 𝑦𝑘,𝑡 − 𝑦𝑘,𝑡−∆

𝑧̇𝑘,𝑡 = 𝑧𝑘,𝑡 − 𝑧𝑘,𝑡−∆

 

where ∆ is the frame interval for calculating the velocity. For the case that 𝑡 ≤ ∆, we 

simply let  

{

𝑥̇𝑘,𝑡 = 𝑥̇𝑘,∆+1

𝑦̇𝑘,𝑡 = 𝑦̇𝑘,∆+1

𝑧̇𝑘,𝑡 = 𝑧̇𝑘,∆+1

 

Therefore, the dimension of velocity tensor is (𝐶0 − 1, 𝑇, 𝐾).  

 

In order to combine the position and speed information, two fusion strategies are 

evaluated, termed ‘early fusion’ and ‘late fusion’, and compared to the original MS-

G3D model. For the early fusion, the tensors of position and speed are concatenated 

to form a new tensor with dimension (2𝐶0 − 1, 𝑇, 𝐾). This tensor is fed into the MS-

G3D model to identify the ragas or musicians. 



 

For the late fusion, a MS-G3D module is introduced to extract the skeleton-based 

feature, of which the dimension is (𝐶1, 𝑇/2, 𝐾). Then features from two channels are 

concatenated to a new tensor with dimension (2𝐶1, 𝑇/2, 𝐾). After that, the fusion 

feature is fed to another MS-G3D module to predict the score of all the actions that 

are required to be identified. The illustration of the late fusion model is shown below. 

 

Results of the raga and musician recognition are shown below. 

Table 1. Accuracy of raga classification for different musicians (AG, CC, SCh) 

 AG CC SCh mean 

2D MS-G3D 29.0% 33.7% 49.0% 37.2% 

2D early fusion 35.3% 33.0% 46.4% 38.2% 

2D late fusion 37.7% 25.1% 45.1% 34.6% 

3D MS-G3D 28.0% 20.7% 39.1% 29.2% 

3D early fusion 30.2% 25.4% 33.3% 29.6% 

3D late fusion 27.1% 19.5% 34.2% 26.9% 

The mean accuracy for the raga classification is about 26.9% ~ 38.2% according to 

different models, all of which are better than the random guess (1 out of 9 ragas, i.e. 

c. 11%). The average classification accuracy using 2D pose data is about 8% better 

than that using 3D pose. The early fusion strategy in the two-pathway method 

achieves the highest mean classification accuracy. 

 

 



Table 2. Accuracy of singer classification on the different test set. 

 Random solo Duo/ concert 

2D MS-G3D 100.0% 60.5% 

2D early fusion 99.8% 68.8% 

2D late fusion 100.0% 56.9% 

3D MS-G3D 100.0% 71.8% 

3D early fusion 100.0% 73.0% 

3D late fusion 100.0% 58.9% 

 

When we randomly divide solo videos into training and test sets and then split the 

video into short clips, all methods success to identify the musicians. When the model 

is trained in solo videos, it performs well on identifying the same musician in totally 

different scenes. The early fusion approach again achieves the best results, but in 

this case the 3D data gives more accurate classification. 
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2.1.17 Intersecting action and perception in autism spectrum 

disorders at the single-trial level (IIT-GE) 
 

Extraction of behavioural indexes of action prediction. We developed a new analytical 

framework to study intention encoding (how intention information is encoded in 

movement kinematics) and intention readout (how intention information is read out 

from visual kinematics) with single-trial resolution. We recently applied this framework 

to investigate how intention encoding and readout intersect at the single-trial level in 

autism spectrum disorders. We report on the study in D2.2 (Study 2.1.17 Intersecting 

https://doi.org/10.1109/CVPR.2017.603


action and perception in autism spectrum disorders at the single-trial level – as 

specified in D1.2).  

To determine the dependency of intention (encoding model) and intention choice 

(readout model) on kinematics over time, we used a logistic regression to estimate the 

single-trial cumulative probability y(t) (that is, the cumulated evidence) in favour of one 

intention (e.g., ‘to place’) as function of the time-dependent kinematic vector in that 

trial until time t. Specifically, we modelled y(t) as a sigmoid transformation of the sum 

of two terms: a linear transformation of the kinematic vector K (t), which describes the 

evidence provided by the single-trial kinematic vector at the current time epoch (t), and 

a drift term, which describes contribution of the cumulated evidence y(t-1)  provided 

by the kinematic vectors up to the previous time epoch (t-1). 

 

 

2.2.7  Slow and fast sync (dynamical model and cultural 

comparison approach) (EuroMov, UDurham) 
 

Development and learning in interaction with the environment, including repeated 

exposure and interaction with patterns determined by culture, constitute an example 

of very slow changes, on an individual’s lifespan scale, that influence rhythmic skills 

(Jacoby & McDermott, 2017). Along this line of thinking, we aim at analysing how 

culture pervades across general rhythm skills and specifically determine elementary 

synchronization. Our first entry point was the comparison of Indians and Frenchs 

participants. Data collected this spring, including 15 French and 15 Indian participants, 

show interesting differences in the way to synchronize to a simple beat. The data 

collected points at analysing further in follow ups two-time scales of adaptation: 

Frequency and phase. For definitions and analysis, the approach uses the theoretical 

framework of coordination dynamics. The basic model is a non-linear model of a self-

sustained oscillator (l.h.s.), forced by a periodic function and random noise (r.h.s.): 

𝑥̈ + 𝑥̇3 − 𝑥̇  +  𝑥.̇ 𝑥2 +  ω0𝑥 =  𝜀. sin(𝜔. 𝑡) + √𝑄. 𝜉𝑡     Eq. 1 

It is well known that this model of synchronization obeys the so- called theory of 

Arnold’s tongues (Kelso & DeGuzman, 1988), enabling identifying a priori the 



determiners of synchronization. From this equation relative phase dynamics can be 

obtained, bistable dynamics of two stable attractors, synchronization and syncopation, 

resp. in phase and antiphase (Kelso et al., 1990; Eq. 2): 

𝜙̇ = 𝛥𝜔 + 𝑎𝑠𝑖𝑛𝜙– bsin2𝜙 +  √𝑄. 𝜉𝑡  Eq.2 

 

Here we study exclusively synchronization, therefore the bistable equation Eq. 2 can 

be linearized to obtain further meaningful observables. 

We ran an experiment examining the hypothesis that the behavioural difference 

observed between the Indians and French synchronization comes from sensorimotor 

adjustments evolving at two-time scales, corresponding in short to period or phase 

adjustments. We aim at i) making this assumption more explicit based on available 

modelling, and ii) testing explicit predictions from the theory, iii) isolate essential 

aspects of cultural factors that determine those differences. 

Participants 

Indians and French participants (N = 15 in each group, 11 men and 4 women, age 

22 to 45), all students at the university, right-handed, recruited in Montpellier, were 

matched in pairs to control for education, age, and musical, or dance, or sports 

experience. Indians recruited had left India less than 2 years before the experiment, 

their mother tongue was Indian, their second language English, and they were not 

fluent in French. Participants gave informed consent before the experiment. 

Task 

The task was to synchronize as best as possible a tap on the table of the index 

finger with a sound. 3 trials were completed. The frequency of the sound beats 

(40ms; carrier frequency 440Hz) sequence was increased every 15 stimuli by 0.3 

Hz. The range of the pacing frequency went from 1 to 6.1 Hz. 

Data collection 

A goniometer was used to collect the index finger position (metacarpophalangeal 

angle), connected to an A to D card, also used to collect stimuli. To get a good 

accuracy for determining the temporal center of each auditory beat we collected all 

signals at 5KHz. A second PC and the sound D to A card was used to display the 

stimuli. 



Data pre-processing 

Angular positions were down sampled to 500Hz and low pass filtered at 30Hz with 

dual pass to negate the phase shift. Stimuli were processed to identify the time of 

each centre of beat, using a low pass (dual pass) filter and local maxima estimation. 

Data processing to measure synchronization 

The relative phase between position and beats was estimated taking the value of the 

Hilbert transform phase of the position at each stimuli onset. Transients (beginning of 

each plateau) were excluded when calculating mean and dispersion of relative 

phase. The angular mean and dispersion were estimated and are well defined in 

stationary behaviours. 

Results 

The maximal rates at which French and Indian participants were able to synchronize 

were comparable. However clearly the classical negative mean asynchrony is not 

observed in the Indians participants (Figure 1). 

 

 

Figure 1. The first task, frequency ranging from 1Hz to 6.1Hz. Histograms of relative phases for all 

the plateaus for French and Indian participants (N = 9720 values; bin size 0.1 radians). The lower 



panel shows the cumulative distributions; a Kolmogorov-Smirnov test on the maximal difference 

between cumulative distributions confirms a significant difference between the distributions of the two 

groups. The distribution of French participants is centred toward positive relative phase, while for the 

Indians participants the distribution is centred on negative values. Please remember that the sign is 

reversed relative to usual conventions: Positive correspond to a movement advance in time with 

respect to the stimuli, which is the classic mean negative asynchrony. 

 

Figure 2.  

The first task, frequency ranging from 1Hz to 6.1Hz. On the top row the color coded histograms of the 

relative phase as a function of the frequency of the stimuli (Red is high occurrences, blue is rare 

occurrences). On the middle row, the box plot of the angular dispersion (variance) of the relative 

phase. On the bottom row, the box plot of the mean dispersion (variance) of the relative phase. 

Please remember that the sign is reversed relative to usual conventions: Positive correspond to a 

movement advance in time with respect to the stimuli, which is the classic mean negative asynchrony. 
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2.3.1. Orchestra violin sections and conductor (IIT-FE; UNIGE) 

Introduction 

Successful human-to-human interaction requires important behavioral adaptation, as 

well as prediction. A large body of literature has focused on cooperation towards 

shared goals, where humans must combine available sensory information with internal 

movement production models. To achieve fast inter-individual coordination, individuals 

may build internal predictive models of other’s behavior. In function of the context, the 

most appropriate motor model is compared with the current observed movement, to 

generate a prediction error (Friston, Mattout, and Kilner 2011) and update own motor 

planning (Sebanz, Bekkering, and Knoblich 2006). In this context, ensemble musicians 

have been proposed as an ideal model, by keeping the key multidimensional 

properties of natural sensorimotor interaction, but allowing relatively good 

experimental control (Volpe, D’Ausilio, et al. 2016; D’Ausilio, Novembre, et al. 2015). 

In the present study, we aim at answering two scientific questions: whether different 

channels of communication exist and whether they carry different information across 

modes of communication. We had a chamber orchestra playing music while we 

recorded bow and head kinematics (instrumental and ancillary movements) of a first 

and second section of violinists (four violinists in each section) as well as the arm and 

head kinematics of two different conductors. In one experimental condition we applied 

a perturbation to the orchestra sensorimotor information flow. The perturbation 

consisted in half-turn rotation of the first section of violinists so that they faced the 

second section and couldn’t see the conductor anymore. This perturbation modifies 

the perceptuo-motor context of the first section of violinists, placing also the second 

section and the conductor into a novel playing situation. By doing so, we analyzed 

inter-group complementary coordination as well as intra-group temporal coordination 

(modes of communication), through different channels of communication (instrumental 

and ancillary movements) during different playing situations (normal and perturbed). 



Participants 

A chamber orchestra consisting of 8 violinists (2 sections of four violinists: S1 and S2) 

and 10 instrumentalists participated in the study along with two professional 

conductors (C1 and C2). Data were collected from the two violinists’ sections and 

conductors. Each violinists section counted four players. 

Apparatus and set-up 

Movement data were collected (1000Hz) by using a Qualisys motion capture system 

equipped with 7 cameras, integrated with the EyesWeb XMI platform: 

http://www.infomus.org/eyesweb_ita.php (Volpe, Alborno, et al. 2016), including audio 

and physiological signals (not used here). Each violinist was equipped with a cap on 

which were placed three passive markers of the Qualisys motion capture system. The 

positions, based upon the 10-20 electroencephalographic system, corresponded to 

Pz, F3 and F4. Before starting recording sessions, we ensured that the cap was not 

moving with musicians’ movements and facial expressions. An average of these three 

markers was taken for further analysis on head movement, to minimize loss of data 

and interpolation. An additional marker was placed on the bows of the players and on 

the baton of the conductors. After data tracking by using the Qualysis Track Manager 

software, the data was exported and analyzed in MATLAB. 

Data pre-processing and analysis 

We first used the spline method to handle the missing data in the 3D trajectories. The 

spline method interpolates missing data with continuous third order derivatives. We 

then computed the magnitude of the acceleration from each 3D trajectory (as done in 

(D’Ausilio et al. 2012)). Acceleration was chosen because it should be more 

informative than trajectory and velocity, especially for what regards expressive 

information transfer. This claim is backed by studies on visuo-motor coordination 

suggesting that a marked deceleration towards the endpoint of a moving object's 

trajectory provides more saliency to the timing of this endpoint, and facilitates 

synchronization with that object (Varlet et al., 2014; Zelic et al., 2016). Each musician 

time-series on each trial was normalized (to z-scores) and outliers (>6std) were set as 

absent values (NaN) and interpolated when the gap was smaller than 200 frames (i.e. 

2sec). The total percentage of interpolated data was: 4.7% (±1.6). 

http://www.infomus.org/eyesweb_ita.php


In the following, we made an empirical dissociation between two modes of 

communications. We considered as intra-group temporal coordination, the relation 

between musicians playing the same score. Due to common score, these musicians 

are engaged in a joint behavior requiring an important degree of temporal coordination. 

In parallel, we named inter-group complementary coordination, the relation between 

musicians having different scores, and thus being engaged in a joint behavior requiring 

an important degree of movement complementarity. 

Intra-section temporal coordination: Principal Component Analysis. To evaluate the 

level of temporal coordination between violinists’ movements of each section of 

violinists (playing the same score), we used a principal component analysis (PCA). 

PCA is a standard statistical technique generally used to extract a low-dimensional 

structure from a high-dimensional dataset. Dimensionality reduction method are 

classically used in the motor synergies field to extract invariant/similar features across 

time between muscle or kinematic parameters. In particular, PCA has been used to 

characterize the degree of covariance across time of different body segments in 

whole-body movements (e.g., reaching (Berret et al. 2009)). Here, PCA was 

performed on the acceleration profiles of the four violinists of each section (Figure 1, 

lower panel), windowed and pre-processed in the same way as Granger Causality 

analysis. Mathematically, the method involves the eigenvalue decomposition of a 

dataset covariance matrix in order to find the principal directions in the high-

dimensional space. For each of the windows, we considered an input matrix composed 

of 300 rows (temporal frames) and 4 columns (the acceleration profiles of the four 

violinists in each section) to which we applied the Matlab princomp function, after a 

zscore normalization of the input matrix. The PCA gives four principal components 

(PC) each written as a linear combination of the initial waveforms (the four violinists’ 

acceleration profile). The variance accounted for (VAF) by the first principal 

component (noted PC1%) is defined as the ratio between the first eigenvalue and the 

sum of all the eigenvalues. The VAF represents the degree to which the linear 

combination associated to each PC is able to approximate the initial dataset. A high 

PC1% value means that the trajectory in the space of angles is close to a straight line 

(i.e., all angles were linearly correlated together) while, a low PC1% value indicates 

that one principal component is not sufficient to describe precisely the trajectories. 



Conductor behavior predictability: auto-regressive model’s fitting. Following 

sensorimotor communication literature (Pezzulo et al., 2018 for a review), we 

evaluated conductor behavior predictability to verify whether intrinsic variability of 

conductor’s behavior was altered by our experimental manipulation. In cooperative 

joint action tasks, leaders tend to make their movements more consistent over time to 

help their partner build a predictive model of other’s action. An increase in the 

predictability of (Partner) A translates into a smaller uncertainty when (Partner) B 

needs to predict future signals coming from A to plan the most appropriate action. We 

evaluated the level of predictability of conductors’ behavior as goodness of fit of the 

linear autoregressive model computed on the conductor acceleration profile extracted 

from bow and head data separately. We modelled the conductor acceleration profile 

via a linear autoregressive model in the same way we computed it for Granger 

Causality analysis and on the same sliding windows parameters. The optimal order of 

the model was determined via the Akaike’s information criterion and the goodness-of-

fit (ARfit) was measured as the sum of squares of the residuals, for each sliding 

window. 

Inter-group complementary coordination: Granger causality analysis. Granger 

causality analysis was then carried out on the preprocessed acceleration waveforms. 

According to Granger formalism, a signal X Granger-causes (or G-causes) a signal Y 

if the past values of X contains information that helps predict Y above and beyond the 

information contained in the past values of Y alone. Thus, a Granger-causality score 

(gca) was defined between each pair of musicians as the log-likelihood ratio of the 

degree to which the prior time series of a musician X (causing variable) contributes to 

predict the current status of a musician Y (dependent variable), over and above the 

degree to which it is predicted by its own prior time series while conditional on the 

remaining musicians time-series (conditional variables). The use of conditional allow 

to take into account the influence of musicians out of the tested pair to avoid 

misinterpretation due to multiple sources of information (D’Ausilio et al. 2012). Gca 

was evaluated (pairwise), every 500 milliseconds on 3-s sliding windows using the 

“Granger Causality connectivity analysis” Matlab toolbox (Seth 2010). Windows 

containing more than one third (i.e., 166ms) of absent values were not used in the 

analysis (less than 5% of the total windows number). The Granger Causality 



computation is similar to the one used in (Badino et al. 2014; D’Ausilio et al. 2012). 

From this point, we will represent gca of X on Y by the notations GX->Y or X->Y. 

We were interested in the causality relations between the conductor and each section 

of violinists (S1 and S2). We performed three different types of Conditional Granger 

causality computations: (1) Causality between each conductor and violinists of S1 

(taken separately): defining as causing variable the conductor, as dependent variable 

each S1 violinist separately and the other way around [conditional variable: musicians 

in S2 - taken separately]. (2) Causality between each conductor and violinists of S2 

(taken separately): defining as causing variable the conductor, as dependent variable 

each S2 violinist separately and the other way around [conditional variable: musicians 

in S1 - taken separately]. (3) Causality between the violinists of S1 and S2 (taken 

separately): defining as causing variable each S1 violinist separately, as dependent 

variable S2 violinists separately and the other way around [conditional variable: the 

conductor]. In these three analyses, we computed gca between each pair of musicians 

on each 3s window. When the causality between the two variables was significant, we 

kept the gca value otherwise this value was set to 0. Finally, gca values were averaged 

across conditional variables, conductors and musicians of same section, to get one 

value per group (i.e. C->S1, S1->C, C->S2, S2->C, S1->S2, S2->S1). Thus, for each 

experimental condition, the output matrix consisted of 6 columns (the number of causal 

relation) and thousands of lines (the number of considered windows). 

More details on Granger computation are reported in D3.1. 

Statistical analyses 

Inter-group and intra-group data did not follow a normal distribution according to 

normality tests (Kolmogorov–Smirnov) and the variances were also not homogeneous 

according to statistical tests (Levene). We, therefore, used a two-tail independent 

samples Welch's t-test  (already used on same type of data in (Badino et al. 2014)). In 

the Welch's t-test the assumption of normality is not critical for large samples (Geary 

1947) as it is the case for our data set. More importantly, Welch developed an 

approximation method for comparing the means of two independent populations when 

their variances are not necessarily equal (Welch 1947). Because Welch's modified t-

test is not derived under the assumption of equal variances, it allows the comparison 

of two populations without first having to test for equality of variance. 



Based on the data extracted in “intra-section temporal coordination”, we made four 

comparisons for each kinematic parameter: %PC1S1 NORM vs %PC1S1 PERT, %PC1S2 

NORM vs %PC1S2 PERT, %PC1S1 NORM vs %PC1S2 NORM, %PC1S1 PERT vs %PC1S2 PERT. For 

“conductor behavior predictability” we compared for each kinematic parameter: ARfit 

NORM vs ARfit PERT. 

Based on the data extracted in the “inter group complementary coordination”, we made 

three different set of comparisons, repeated twice (once for head data, once for bow 

data). (1) For the normal condition, we ran 5 comparisons: C->S1 vs S1->C, C->S2 vs 

S2->C, S1->S2 vs S2->S1, C->S1 vs C->S2, S1->C vs S2->C. The other possible 

comparisons were not performed because they were not informative for the study (e.g. 

C->S1 vs S2->C) or comparing elements of different nature (e.g. C->S1 vs S2->S1). 

(2) For the perturbed condition, we ran the same 5 comparisons as in (1). (3) Across 

the two experimental conditions, we ran 6 comparisons: C->S1NORM vs C->S1PERT, C-

>S2NORM vs C->S2PERT, S1->CNORM vs S1->CPERT, S2->CNORM vs S2->CPERT, S1-

>S2NORM vs S1->S2PERT, S2->S1NORM vs S2->S1PERT. 

In all these analyses, the p-level was corrected for multiple comparisons with the 

Benjamini and Hochberg false discovery rate procedure. We reported in the results 

part the corrected p-value, and the value of the test statistic. We considered as 

marginally significant the statistical comparison for which the p-value before correction 

was inferior to 0.05. All analyses were conducted using the Matlab Statistics toolbox 

(Mathworks Inc.). 
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2.3.4 Similarity of motor signatures across multiple timescales 

in musical performers: Computing Dyadic Synchronisation 

using marker-less techniques. (UNIGE) 

 
As illustrated and explained in document D1.7, we are looking at multiple ways of 

investigating dyadic synchronisation between musicians in an ensemble. 

A recent update in our project is to also look at Hilbert-Huang Transform (HHT) as a 

way to decompose the motion signals into their instantaneous frequency scale. This 

is being done in addition to Fourier Transform (FFT) to observe differences, if any, in 

our results. 

 



On using RMPE (Regional Multi-Person Pose Estimation) or AlphaPose (Fang, Hao-

Shu, et al. 2017), we are able to extract robust 2D key points that is extracted, and 

later exploited to study human movement behavior. This data is available in the form 

of a json file at the end of applying the algorithm. We adopt a 7-step methodology to 

help obtain phase-locking values using. The diagram below has been modified to 

include HHT also as a part of the process (Figure 1). 

 

 
  

Figure 1.  

The Methodology followed for obtaining Phase-Locking Values  

 
On computing the phase-locking values, we then compute the Dyadic 

Synchronization that emerges during the performances. To further, reference, below 

is an eight-step pipeline that is utilized to compute the Dyadic Synchronization.  

 
 

      



Figure 2. An illustration of the process pipeline for computing Dyadic Synchronization 

between a dyad, or in other words two co-performers.  
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