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1. Introduction 

This deliverable describes the hardware and software tools used for acquiring and analysing data 

in the context of joint actions. This deliverable is strongly connected to deliverable D3.1 (Phase 

1) which is about the hardware and software tools used for acquiring and analysing data in the 

context of single actions. As such, this document focuses only on the tools of sub projects specific 

for joint actions. 

 

2. Deep neural network-based movement prediction 

KTH has conducted a number of experiments on so-called conversational groups (Yang et al., 

2020) in an effort to find solutions based on machine learning for movements to be represented 

in more compact forms, for movement qualities over time horizons of up to ten seconds to be 

predicted, and ideally for new movements to be generated, such as the movement of an avatar 

in virtual reality.  

Movement prediction for conversational groups 

With the help of 40 human subjects (27F/13M, 22-35 years old), motion capture sequences of a 

newcomer approaching a group of individuals engaged in a conversation game were collected. 

Without the subjects being told in advance how to behave, the sequences were later annotated 

as either Accommodating or Ignoring depending on the behaviour of the group as a whole with 

respect to the newcomer. Two examples of avatars generated from the captured data can be 

seen in Fig. 1.  
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Figure 1. Group approach behaviors with a newcomer being accommodated (above) and ignored (below) as he/she 

is approaching the group. 

 

A number of machine learning methods for human movement prediction were then tested, 

based on their ability to model and predict the behaviour of the group. The baseline was an 

attention-based method (AGNet) that focuses on particular body-markers and events in time that 

are most indicative, which leads to a representation in which the spatial and temporal dimensions 

are no longer explicitly represented. Another proposed and tested method was an attention-

based method (AGTransformer) that uses so-called Transformer networks that are better at 

capturing the temporal relations between indicative events. 

A potential problem with methods based on attention, at least for some applications, is the 

reliance on local events that are indicative of the property you like to capture, but in some cases, 

the overall movement might be what is most indicative. We thus explored Graph Convolutional 

Networks (GCNs) for the sake of movement representation by extending such networks to the 

temporal domain. Using a neighbourhood system defined over the set of body markers over time 

and space, information is gradually spread over a number of layers and stages. By doing so 

information relevant for the final task is enhanced, while the structure of the sequence in terms 

of body markers is preserved until the latest possible stage, where a prediction is made.  

As can be seen to the left of Fig. 2, information is propagated in a number of stages with the 

results from each stage concatenated into a long feature vector. Since the spatiotemporal 

receptive field increases for each stage, the representation is able to capture movements at 

different temporal resolutions, which is beneficial if the relevant resolution for a particular 

property of interest is unknown. Each stage consists of a number of layers with information 

spread spatially (S-GCN) over the body-markers and temporarily (TCN) in an interleaved fashion. 

For the temporal domain dilated convolutions are used since it allows for properties to be 

captured over gradually increasing time horizons.  

 

Figure 2. The movement of each agent is represented by a Multi-Spatial-Temporal GCN (MST-GCN), with multiple 
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such representations combined with a group GCN to model the behaviour of the group as a whole and to predict 

whether the group is Accommodating or Ignoring the newcomer. 

 

For the task of group behaviour prediction, experiments showed that, with an accuracy of 91.5%, 

MST-GCN was superior to the tested attention-based methods, among which AGTransformer 

(79.1%) outperformed AGNet (70.3%). A GCN on group level also showed to be preferable from 

having an attentional mechanism and a multi-temporal representation improved compared to 

using a single temporal scale. The best possible results (93.0%) were achieved by also encoding 

the relative orientation and distance of the agents’ heads with respect to the newcomer, but that 

leads to a considerably less generic representation. 

Movement prediction for human-centered collaborative robots 

MST-GCN was adopted for a human-centered collaborative robot system (Ghadirzadeh et al., 

2020) with which a robot learns to act in accordance with the movement of a human collaborator. 

The neural network-based framework used by the robot to learn appropriate behaviours can be 

seen in Fig. 3. The upper half shows an encoder-decoder structure applied for representation 

learning. Instead of training MST-GCN in a supervised manner to predict behaviours, such as for 

the conversational groups above, the encoder-decoder is trained to reconstruct the movement 

data (bi) on the input, which for the experiments were 25 frames of motion capture data. Thus, 

a more compact representation can be learned in a supervised manner, without requiring any 

annotations.  

 

 

Figure 3. A reinforcement learning based system for a robot to learn to act in accordance with a 

human collaborator. 

The encoder is represented by an MST-GCN followed by a couple of fully connected layers and 

the decoder by another couple of fully connected layers. Given that the waist of the network 

consists of only 32 neurons, the network forces the movement data to be represented by a latent 

space representation (si) of a much lower dimensionality, which reduces the redundancy of the 
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original movement data. In practice, a so-called variational autoencoder is used for the purpose, 

which regularizes the distribution in the latent space forcing it to be Gaussian. This means that 

each point in the latent space will appear to be meaningful, if it is reconstructed back into the 

space of motion capture data, which in turn means that the network used to train a policy for 

controlling the movement of the robot only needs to consider human movements that appear in 

practice.  

The lower part of the network represents a Q-function that is used for reinforcement learning to 

learn the policy, given the current state of the world. This state consists of two parts; the latent 

representation (si) of the movement and the state of a behaviour tree (bti) that represents how 

far the partners have come in the collaborative task. Before the latent representation is used, 

however, it is passed through a recurrent neural network, an LSTM, that further extends the 

window in time over which movements are considered. This allows the system to be less 

dependent on the particular choice of window for MST-GCN. The output of the full network, the 

q-values, represents the predicted accumulated rewards for a discrete set of possible next 

actions, actions such as “pick up”, “wait”, etc. Once the policy is applied for robot control, the 

action with the highest q-value is selected in each step of the interaction. 

The learning system was tested for a collaborative box packing task, shown in Fig. 4. The study 

involved 7 human subjects (3F/4M, 24-32 years old) with 430 sessions recorded in total. By 

observing the movements of a human collaborator, the robot tries to predict what objects to pick 

up, where to place them and when the box is finished and ready for delivery. Rewards were 

defined as the time saved by the robot being proactive, instead of letting the robot wait for the 

human movement to end before it decides what to do. In the graph to the right of Fig. 4, the 

average reward can be seen as training progresses, with and without supervision. When the 

robot is supervised, it always knows what the human partner is about to do. Without supervision 

the partner’s intentions have to be inferred from the movement data. Given the similarity 

between the two graphs, it can be concluded that the movement data, when compacted into the 

latent space representation, is rich enough for the robot to infer the intentions of its partner and 

learn the task, since no supervision was needed. 
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Figure 4: A collaborative box packing task (left) and the learning curve, with and without 

supervision (right). The indicated average return corresponds to the time saved per interaction 

step by the robot acting proactively. With supervision the robot knows what the real intentions 

of the human subject are, but without it, intentions have to be inferred. 

 

References 
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graph-based neural networks”, in Proc. European Conference on Artificial Intelligence, 2020. 
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3. Group synchronisation 

During M7-M20 EuroMov has developed tools and analytical methods for computation of group 

synchronisation metrics and modelling in different sensorimotor scenarios. Humans interact in 

groups through various perception and action channels. The continuity of interaction despite a 

transient loss of perceptual contact often exists and contributes to goal achievement. Here we 

report a modelling framework used to capture the persistence of synchronization during group-

based pendulum swinging in novices (n=7) and experts (n=7) when visual coupling is suddenly 

lost (for rationale please see 2.3.2 Dance to Sync study in D1.2 and D2.5, Bardy et al. 2020). 

  

Data processing. Each pendulum was equipped with a calibrated analog potentiometer to record 

its angular motion at fs = 200 Hz. The acquisition was performed using the Matlab software, 

recording the signals of the seven pendulums simultaneously. The position time series were then 

smoothed out through a Moving Average filter with a time window of 10 samples (Δtw = 0.05 s). 

The Hilbert transform method was applied on the filtered positions to extract the time series of 

the phases. 
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Data analysis and relevant metrics. Denoting T as the number of samples in each trial and N as 

the number of players, we can define 𝜃𝑖(𝑘) as the phase of the i-th pendulum at the k-th sampling 

instant, for all i = 1,…,N and k = 1,…, T. The following set of metrics were used to capture the 

relevant features of the human group interactions recorded in our experiments: 

 

Individual frequencies and group frequency. At each time step, we computed the angular 

velocity of each player by applying finite differences (forward Euler method) to the extracted 

phases: 

 

𝜔𝑖(𝑘) =
𝜃𝑖(𝑘+1)−𝜃𝑖(𝑘)

𝛥𝑡
,             𝑖 = 1,2, . . . , 𝑁,      

 (4) 

 

with Δt = 1/fs being the sampling time. This allowed us to characterize the frequency of each 

participant and its stability. Then, the average frequency of the group, ωgroup(k), was extracted as 

the time-average of ωi(k). 

 

Group synchronization metrics. To quantify and characterize the level of synchronization among 

the players, we used the following metrics: 

 

- phase-synchronization: for each trial, we evaluated the extent of synchronization 

in the group at each sampling time k through the order parameter r(k), defined 

as 

 

𝑟(𝑘) = |
1

𝑁
∑𝑁

𝑖=1 𝑒𝑗𝜃𝑖(𝑘)|              ∀𝑘 ∈ {1, . . . , 𝑇},      

where j is the imaginary unit. Note that r(k) belongs to the interval [0,1], and it is 1 when the 

phases coincide at time k. Then, we computed the average order parameter in the trial  𝑟 and 

that is, 

 

𝑟 =
1

𝑇
∑𝑇

𝑘=1 𝑟(𝑘)          

Levels of group phase synchronization: to allow for a proper comparison of the extent of 

synchronization in the group in the various conditions introduced in the main document, we 

discretized the order parameters into four phase-synchronization levels (see Figure XX below): 
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Note that Levelr(k) = 1 (not in sync) means that the phase of the pendula at time k cannot be 

grouped in a circular sector of angle π rad. 

 

Time-To-Synchronization and Time-In-Synchronization: Figure below illustrates how data were 

classified in order to compute the Time-To-Synchronization (TTS) and the Time-In-

Synchronization (TIS). 

 
 

  
            
Figure: Three levels of synchronization — Weak (W), Medium (M), and High (H) — characterized 

by the value of the order parameter r, used to determine Time-To-Synchronization (TTS) and 
Time-in-Synchronization (TIS). EO: Eyes Open; EC: Eyes Closed. 
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Eyes-open (EO): computing TTS. For a given trial, we denoted Tsync,i as the number of sampling 

instants k such that Levelr(k) = i, and the corresponding fraction Fsync,i = Tsync,i /T, for i = 1, …, 4. We 

computed TTS only for trials in which Fsync,1 ≤ 0.5 in order to exclude from the analysis the trials 

in which synchronization was only occasionally achieved. The remaining trials were classified as 

follows: 

 

1. If Fsync,2 + Fsync,3 > 0.75(1 – Fsync,1), then the trial was considered as an   instance of Medium 

synchronization; 

2. If Fsync,3 + Fsync,4 > 0.75(1 – Fsync,1), then the trial was considered as an instance of High 

synchronization 

3. If neither condition 1 nor 2 are satisfied, then the trial is considered as an instance of 

Weak synchronization. 

 

Depending on the above classification, TTS was defined as the first time instant such that Levelr 

became 2 (for trials of weak synchronization), 3 (for trials of medium synchronization), or 4 (for 

trials of high synchronization). 

 

Eyes-closed (EC2): computing TIS.  TIS was defined as the first time instant such that Levelr < 1 if 

the players stayed in sync (Levelr > 1) after closing their eyes for at least 3 consecutive periods 

of length 2π /ωgroup, where ωgroup is the mean frequency of the players in the trial. Otherwise, 

we set TIS = 0. 

Following (Alderiso et al., 2017), group dynamics were initially modeled as a network of 

Kuramoto oscillators, coupled through the graph topologies used in the experiment (Complete, 

Ring, Path, Star, see Figure XX).  

 

 
Figure: Four topologies during familiar human group cooperation situations, with various 
coupling modalities. (a) Complete graph: an ordinary organization during everyday working 
meetings; (b) Path graph: often present in sports, for instance in team rowing where partners are 
mechanically and visually coupled to two neighbors, except for the first and last rowers; (c) Ring 
graph: a common structure in many popular dances or among children at play (round dance); (d) 
Star graph: typical of musical ensembles, for instance when orchestra members are visually 
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coupled only to the director. Image (b) comes from unsplash.com, all the others come from 
pixabay.com. 
 

We modeled the transition between ‘eyes closed’ and ‘eyes open’ by setting the coupling gain c 

instantaneously to zero so that the motion of each agent in the group is modeled as 

 

 

 

[1] 

 

 

where N is the number of players, θi  the phase of the movement of the i-th player, ωi their 

natural frequency, and c the strength of the coupling with the other players when visual coupling 

was established. The coefficients aij are set equal to 1 if the topology being studied involves a 

visual connection between players i and j when eyes are open, otherwise they are set equal to 0. 

In the following, we will refer to this model as the Static Coupling model (SC). In Experiment 1, 

participants’ similarity (i.e., homogeneity) was controlled by manipulating the pendula's inertia 

and hence the natural frequency of the players' oscillatory motion. This enabled us to evaluate 

the influence of the players' similarity and graph structure on the emergence and quality of group 

synchronization. Specifically, four conditions were considered, involving (i) individual oscillations 

(solo), and three collective oscillations (ii) at the same shared frequency (all matched), (ii) at the 

same frequency for six out of the seven players (all matched but one), and (iv) at seven different 

frequencies corresponding to each player's preferred pace (natural). In Experiment 2, 

homogeneity among the players was manipulated at a different scale, by comparing groups of 

novices with groups of certified dancers (experts). To complete our analyses, we evaluated the 

effect of homogeneity in individual frequencies on the temporal aspects of the various 

synchronization regimes. This was performed by focusing on two variables, (i) the time to 

synchronization (TTS), capturing the time necessary for all participants to reach phase 

synchronization once they had opened their eyes, and (ii) the time remaining in synchronization 

(TIS) after eye closure, quantifying the memory effect. To test the model validity, we 

parameterized the model from experimental data (Bardy et al. 2020), and then computed the 

average TIS after switching the coupling c to zero. We observed that the SC model was unable to 

capture the relatively longer TIS measured experimentally, with model predictions being 

consistently shorter than expected in all conditions except in the natural condition. When used 

to explain the observations in Experiment 2, the same model did capture the synchronization 

dynamics of the non-dancers.Therefore, a more sophisticated model is required to adequately 

capture the experimental observations (Table XX). 
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Table. Comparison of Static Coupling, Individual Memory and Social Memory models with 
experimental results. Average (with standard deviation) experimental Time-In-Sync 𝑇𝐼𝑆𝑒𝑥𝑝 

versus average (with standard deviation) simulated Time-In-Sync 𝑇𝐼𝑆𝑠𝑖𝑚; **p < 0.01, ***p < 

0.001.  
 
 Conditions Experimental 

results 

𝑇𝐼𝑆𝑒𝑥𝑝 

Static Coupling 

𝑇𝐼𝑆𝑠𝑖𝑚 

Individual 

Memory 

𝑇𝐼𝑆𝑠𝑖𝑚 

Social Memory 

𝑇𝐼𝑆𝑠𝑖𝑚 

Exp
. 1 

Matched 

Matched-

but-one 

Natural 

9.95 ± 3.71 s 

(n=15) 

8.20 ± 1.94 s 

(n=10) 

5.32 ± 1.17 s 

(n=11) 

6.52 ± 2.88 s (n=65) 

** 

. 5.94 ± 2.77 s (n=39) 

** 

4.74 ± 1.06 s (n=12) 

9.73 ± 3.72 s 

(n=139) 

8.26 ± 2.55 s 

(n=106) 

- 

9.71 ± 3.67 s 

(n=123) 

8.16 ± 3.23 s 

(n=112) 

- 

Exp
. 2 

Dancers 

Non 

dancers 

8.81 ± 3.42 s 

(n=32) 

6.26 ± 2.43 s 

(n=17) 

5.92 ± 2.11 s (n=129) 

*** 

5.66 ± 2.07 s (n=55) 

8.90 ± 2.97 s 

(n=251) 

- 

8.97 ± 3.36 s 

(n=242) 

- 

 
More specifically, the longer TIS exhibited in both experimental scenarios suggests that some 

memory mechanism was present, allowing the groups to stay in sync for longer than predicted 

by a sudden memory-less transition from eyes-open to eyes-closed. As presented in the 

Introduction, we contrast below two possible alternatives to model [1]. 

 

In the first model extension, the Individual Memory model (IM), we assumed that the motion 

frequency exhibited by each player at time ta of visual occlusion remains first as similar as 

possible to the last frequency θi(ta) exhibited with eyes open, and then, after some time lag, 

relaxes back to the natural frequency of the player, ωi. The model then becomes: 

 

 

 

[2] 

 

 

 

with 𝜙(𝑡) = 𝑒𝑥𝑝(−((𝑡 − 𝑡_𝑎 )) ⁄ 𝜏); τ being the estimate of the decay time observed 

experimentally once visual contact among the participants is lost. We contrasted the model 

above with the predictions of a different model, the Social Memory model (SM). In this model, 

we assumed that participants maintain longer synchronization times at eye closure by 

internalizing the aggregate group dynamics. These dynamics are captured by the modulus 
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𝑟𝑖(𝑡) and phase 𝜓𝑟𝑒𝑓
𝑖 (𝑡) of the local order parameter computed by player i, using information 

received from the visually coupled players before closing their eyes. In this case we have 

 

 

[3] 

 

where 𝜓𝑟𝑒𝑓
𝑖 (𝑡) = 𝜓˙

𝑟𝑒𝑓

𝑖
(𝑡𝑎)(𝑡 − 𝑡𝑎) + 𝜓𝑟𝑒𝑓

𝑖 (𝑡𝑎) and 𝜙(𝑡) is the decay function defined above. 

Both the IM model and the SM model were found to capture the experimental data . In 

Experiment 2, the IM model was found to better capture the experimental data than the SM 

Model. 

Taken altogether, these tools helped to understand why behavioural cohesion is easier to 

maintain when perceptual exchanges are lost and how perceptuo-motor expertise can reinforce 

this cohesion. Those tools and findings are currently re-applied and nourishing the design of 

studies reported as 2.3.3 Time to Sync project; looking into capturing emotional qualities during 

multi agent scenarios through metrics of Individual and Group Motor Signatures from motion 

capture data and heart rate variability during joint action, complex tasks. 
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4. Computed Features of Moving Emotional Bodies in Interactions  

Participants  

UM_CN has developed tools for the analysis of the mechanisms underlying emotional recognition 

in social interactions, by looking into single-person and interaction body features. Videos showing 

an interaction between two actors facing each other were used, with one actor depicting anger 

(“aggressor”) and the other depicting fear (“victim”). From those videos, body “skeletons” were 

extracted using state of the art deep learning libraries (OpenPose). Methods were developed to 

extract meaningful features from the videos including kinematic, postural and interaction 

features.  

 

Stimuli  
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The stimuli consisted of 61 videos of 1.5-second duration showing the interaction between two 

people. As mentioned by Nelson, de Bezerra, Claudio, and Pereira (2013), dynamic stimuli have 

a higher ecological validity compared to static stimuli. Emotions expressed in dynamic stimuli are 

better recognised, especially for lower intensities of the emotion. In each video, one of the actors 

depicted an aggressive behaviour whereas the other one depicted fearful behaviour. The 

interactions consisted of eight different pairs of two male actors. The actors were dressed in black 

and acted in front of a neutral light-coloured curtain, standing in front of each other. To prevent 

interference and better isolate the effect of bodily emotion expression, faces were blurred.  

Study Design  

Feature Definition  

Each video consisted of 39 frames, for which a 2D pose of each actor was estimated using Open 

Pose (v1.0.1; Cao, Simon, Wei, & Sheikh, 2017). The 2D skeleton consists of 18 key points 

representing the nose, neck, right and left shoulder, right and left elbow, right and left wrist, right 

and left hip, right and left knee, right and left ankle, right and left ear. Each key point consisted 

of an x- and y-coordinate as well as a confidence value, which indicates with which certainly the 

algorithm determined the key point. The facial blurring resulted in poor estimations of the head 

key points. Since this study is investigating bodily features, the key points of eyes and ears were 

dismissed. To be able to reference head positioning, the key point of the nose was kept and 

corrected if necessary. Other missing or possible incorrectly estimated key points were later 

added manually to the data. Thus, the resulting data consisted of 61 videos, with 39 frames each 

for which we have (the x- and y-coordinates of) 14 key points per actor.  

From those key points, a total of fourteen kinematic and postural features as well as 

interaction features were computed, that may contribute to the recognition of emotional 

movements. The kinematic features are Acceleration, Velocity, Vertical Movement and Forward-

Backwards Movement, whereas the postural features consist of Symmetry, Limb Angles, Head 

Inclination and three further features concerning body contraction (Limb Contraction, Shoulder 

Ratio and Surface). The interaction features concerned the Distance between the Heads and 

Hands, respectively, and the closest distance between actors. The features were calculated in 

MATLAB (vR2017a, The MathWorks Inc., Natick, MA, USA) using the x- and y-coordinates of the 

14 key points. The features were first calculated per frame for each video. For the statistical 

analysis and classification trees, data was averaged across frames and key points.  

Velocity was defined by the amount of movement of each key point from the 

neighbouring frames. Further, Acceleration was computed by the difference in the amount of 

displacement of each key point. Vertical Movement was computed by the vertical displacement 

of the key points. The last kinematic feature was Forward Backward Movement, computed by 

the horizontal displacement of the key points. Furthermore, four more features concerning body 

contraction were computed. The first one was Limb Contraction, which was computed by the 

distance between the wrist and the head, and the second Shoulder Ratio, which was the amount 

of extension of the limbs with respect to the shoulders. The third body contraction feature was 

Surface which was computed by multiplying the x- and y-axis values.  Fourth, Limb Angles which 
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was the angles between bodily segments. Two more postural features were computed, namely 

Head Inclination, which was computed by the distance between nose and neck in the vertical 

axis, Symmetry, which is defined by the symmetrical movement of the left and right limbs. Lastly, 

three interaction features were calculated to have an indication of the proximity between the 

two actors: the distance between the hands and between the heads, respectively, and the 

distance of the key points that get the closest during the whole interaction. 

Representational Similarity Analysis 

In order to investigate the relationship among the computed features, representational similarity 

analyses (RSA) (Kriegeskorte, Mur, & Bandettini, 2008) were conducted. The RSA allows the 

comparison between different representations of stimuli and data modalities, which were 

computed using MATLAB. The computed relationships between pairs of features/ stimuli are 

then visualized in representational dissimilarity matrices (RDMs).  RDMs contain one cell per 

feature pair/experimental condition, which reflects the dissimilarity between the two. Thus, an 

RDM is symmetrical about a diagonal (which represents the dissimilarity between identical 

conditions/features and therefore equals zero). Each off-diagonal value indicates the dissimilarity 

between a feature or rating of different pair of videos.  

The dissimilarity between feature values for each video pair was computed in Euclidean distance, 

using the non-averaged data, meaning that it was neither averaged across key points, nor over 

frames. This was done for each computed feature for each of the 122 single videos. This led to 

ten 122x122 distance matrices. To investigate the relationship between the computed features 

and possible correlations among each other, Spearman's rank correlations were conducted 

between all feature RDMs, resulting in a second order RDM.  
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Figure 1. Representational Dissimilarity Matrices for all computed features concerning single 

person movements. Data used was not averaged over time or key points. Each RDM reflects a 

pairwise comparison one feature for all 122 movements. Blue colour indicates more similarity, 

whereas yellow colour indicate dissimilarity, measured with Euclidean distance. Actor Type 

(aggressor/victim) represents the organisation of each RDM between aggressor and victim 

videos. The first two rows represented the kinematic features, with the top left RDM reflecting 

the structure of all RDMs. The last two rows represented the postural features, with the third row 

consisting of features related to body contraction. 
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Statistical Analysis  

The data of the computed features was averaged across key points and frames, per video and 

feature. Thus, 122 values for each feature were obtained (excluding interaction features), since 

each of the 61 videos resulted in two values, one for the aggressor, and one for the victim. The 

statistical analyses were conducted in IBM SPSS Statistics 24.0. An independent-samples t-test 

was conducted to compare the computed features between the victim and aggressor 

movements. This was done to determine whether the differences observed in the RDMs are 

indeed significant.  

Classification Trees  

To explore which of the computed features were most important in the classification of the 

aggressors and victim’s movement, classification trees were computed in MATLAB. The 

classification is done by binary splitting the data at each node, choosing the criteria best 

predicting whether a video depicts an aggressor or a victim movement. A bootstrap-aggregation 

approach was used to reduce overfitting as well as to improve generalisation. This means that 

the classification is not based on one, but a weighted amount of decision trees. To determine 

which computed features can predict the classification between aggressor and victim the best, 

one classification tree was performed. The classification tree takes all ten computed features into 

account that concern the single-actor videos, which, for this purpose, were averaged across key 

points and frames.  
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5. Dyadic Synchronisation using Phase-Amplitude Coupling (UNIGE, WU) 

In our recent study titled “Capturing human movement and shape information from small groups 
to extract expressive and social features using markerless techniques” (Sabharval 2020), we 
highlight the use of Phase-Locking Values or Phase-Amplitude Coupling as a measure to compute 
the dyadic synchronization between participants of a musical ensemble. By using a Phase-
Amplitude Coupling measure we can evaluate an unconscious body movement synchrony 
between participants in an experiment. While Phase-Locking Values (PLV) and phase synchrony 
(Varlet et al. 2020) are also used to understand the synchronization of EEG readings of brain 
regions, we can apply the same principles to also understand the connectivity or synchronization 
that exists between two participants in a dyadic setup, by making use of phase synchronization 
metrics. Hence, PLV values can be utilized to establish a functional level connectivity that is visible 
between performers in a Musical Ensemble – helping us answer questions raised in the 
Hypothesis. 

Measuring Phase-Amplitude Coupling and compute Phase-Locking Values 

To calculate phase-amplitude coupling, the raw signal related information is filtered for a 
frequency of interest. Then, the real and complex values are extracted from the complex values 
of the signal being analyzed. After which, the phase angles or amplitude (as the case may be) are 
extracted from the complex values in the signal. 

Phase-Locking Values 

Phase-Locking Values as utilized by Mormann et al. (2005) can be computed using the phase 
values that are extracted from the complex values of the signal, obtained by implementing a Fast 
Fourier Transform (FFT) - with which we can obtain magnitude values at each frequency bin. 
Phase locking is an important concept in computing interactions in non-linear and complex 
systems. Phase-Locking Value (PLV) is the most commonly used interaction measure, and for the 
purpose of our study, we utilize relative phase values as suggested by previous research 
(Rosenblum et al. 2000), for assessing the interaction and consequent dyadic synchronization 
between two co-performers. 

Using PLV, we can understand the interaction that exists between two non-linear time- series, 
and in our case, we use the head movement data (using nose key-point) extracted using HPEs to 
ascertain the level of interaction between two co-performers (Aydore et al. 2013; Lachaux et al. 
1999). For each data point at a specific time interval, phase differences are computed for the 
signals between which phase-locking values are meant to be computed. The word meant is used 
very carefully since these signals must be of those two co-performers for whom Phase- Locking 
Values are meant to computed. 

As suggested in the equation below, we compute the absolute value of the mean phase 
difference between the signals of the two co-performers. This is represented as a complex unit-
length vector (Aydore et al. 2013). The absolute value of the mean is then a measure of the 
magnitude of the vector, which indicates the amount of phase-amplitude coupling, or the 
coupling strength. 

The PLV is calculated using the following formula: 
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Here n is the total number of data points, t is a data point that is available at every equally 
distributed time stamp. Θ1 and Θ2 are the phase angles of the two signals being analyzed. Thus, 
by obtaining the instantaneous phase angles of two signals can help us obtain the dyadic 
synchronization, or the coupling strength, that exists between two performers in a musical 
ensemble. The degree of synchronization as computed here is in the range of [0,1] where the 
highest state of synchronization sits at 1. 

 

Future work 

While the above method using Phase-Locking Values has given us promising results, we are 
currently working on developing alternative techniques to compute inter-personal coordination. 
We will also investigate other areas where these computational models can find their apt use. 
These include: 

1. Cross-spectral coherence 
2. Cross-wavelet coherence  
3. Multiscale Entropy (Glowinski et al. 2010) 
4. Multi-Event Class Synchronization (Volpe 2021) 
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