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Introduction 

 

This deliverable reports on the progress on the research conducted between M7-M18 of 

the EnTimeMent project with regards to the individual action execution and observation 

axis, focused on studies on individual motor behaviour. This part of the project constitute 

the baseline for research and theoretical work developed in the Phase I of the 

EnTimeMent project, focused on dyadic studies (n=2) and on group motor behaviour 

(involving three people or more, n>2) which are reported in D2.3 and D2.5 respectively. 

The numbering of the studies reported herein, refers to the most recent version of 

deliverable D1.2 Research Requirements providing an update on the methodological 

background and know-how of the studies. In this deliverable we report results of studies 

that have finished the stage of data collection and analysis (2.1.2, 2.1.6, 2.1.8, 2.1.11, 

2.1.15). 

 

A major theoretical shift in cognitive neuroscience was driven by a new conceptualization 

of the motor system. In fact, motor processes seem to play a role in perceptual and 

cognitive functions, challenging the classical sensory versus motor separation and 

opening the doors to embodied cognition research in both humans and artificial systems. 

Critically, the recruitment of motor programs, during action/object perception, constrain 

the active search of specific sensory features that maximize the discrimination between 

different perceptual hypotheses and support prediction of future information at multiple 

timescales. The generation of active inferences about future actions of conspecifics is 

central to our capability to smoothly interact with each other and, therefore, fundamental 

to the development of human cognition. 

 

In this deliverable we collected all ongoing research, investigating action-perception 

coupling in single individuals and thus on the neurobehavioral building blocks allowing 

sensorimotor communication in dyads or groups. Studies presented below are those that 

have either published or are in an advanced stage close to submission for publication. 
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The first two studies are based on the same theoretical framework suggesting that 

Individual Motor Signatures (IMS) characterize action execution. Briefly, IMSs are 

relatively stable movement strategies that each one of us unknowingly display when 

moving in our environment. Interestingly, data from the first experiment (2.1.2) provide 

evidence that motor activations during action observation are driven by the mismatch 

between the observers’ and actors’ IMSs. The larger the distance the larger is the motor 

recruitment, thus suggesting that the motor system might indeed act as an inferential 

engine that compares other’s action to our own template. The second study (2.1.6) 

approaches a similar problem from a different perspective. In fact, the goal of this project 

is to automatically extract IMSs from arm movement by using both traditional machine 

learning methods and more recent deep learning strategies. 

 

The third (2.1.8) and fourth projects (2.1.11) explored the sensorimotor bases of 

expressivity. Among them the first aimed at extracting expressivity measures from 

complex individual body motion. In order to do so, a novel computational pipeline has 

been implemented by integrating graph and game theory towards the analysis of the 

perceived origin of full-body human movement and its propagation. In fact, the analysis 

of the origin of movement is an important component in the understanding and modeling 

expressivity. The data, extracted with the computational method, have then been 

submitted for evaluation to a panel of dancers with varying degrees of expertise. The 

following study has instead tried to discover which specific postural and kinematic 

features could be computed from affective whole-body movement videos and related 

those to brain responses. By means of state-of-the-art neuroimaging methods it was 

investigated whether the (dis)similarity of body posture and kinematics between different 

emotional categories could explain neural responses to body expressions in and beyond 

body-selective regions. 

 

Finally, the last section reports on the 2.1.14 research activities aimed at the automatic 

detection of pain and associated behavior from body movements. This research program 

is a key component of WP4, constituting one of the use case scenarios planned in 
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EnTimeMent. Taken together, Phase I results reported herein pushed forward current 

state-of-the-art description of human movement from the perspective of individual 

differences (IMS) and their expressive properties. Studies reported below addressed 

multiple gaps in the body of research and emphasized the importance of approaching 

human movement analysis and modeling through the lens of mid-layer features. 

Research roadmap for Phase II of the EnTimeMent project has been established (D1.2 

Research requirements), which will push further the frontiers towards a full understanding 

of the importance of modeling human movement across multiple timescales. 

 

Updates from Phase 1 to Phase 2 

 

UCL - Added a fourth study titled ‘Accounting for Timescale Differences in Leveraging 

Human Activity Recognition (HAR) to enable Protective Behaviour Detection (PBD) with 

An Hierarchical HAR-PBD Model’ 

UNIGE – Added new descriptions and results in the section “2.1.8 Perception of the origin 

of full body human movement and its propagation” and section “2.1.6 Investigate 

singularity in ellipses drawing”. 

IIT-UNIFE – Added results from one project as described in Deliverable 1.2, point 2.1.1 

“Cortico-motor alpha coherence influence visual perception”. 

IIT GE – Added results from a study aimed at investigating how action and perception 

intersect at the single-trial level in autism spectrum disorders 
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2.1.2 Action variability in action observation and 

execution 

 

For a full description please see: Hilt P. M., Cardellicchio P., Dolfini E., Pozzo T., 

Fadiga L., D’Ausilio A. (2020) Motor recruitment during action observation: effect of 

interindividual differences in action strategy. Cereb Cortex, 30(7), 3910–3920. 

 

Action Perception 

Mirror neurons were originally described as visuomotor neurons that are engaged both 

during visual presentation of actions performed by conspecifics, and during the actual 

execution of these actions (Rizzolatti and Craighero 2004). These neurons were first 

discovered using single-cell recordings in monkey premotor cortex (area F5; di Pellegrino 

et al. 1992) and later within monkey inferior parietal cortex (PF/PFG; Gallese et al. 2002; 

Fogassi et al. 2005). 

Since then, there has been a growing interest in mirror neurons both in the scientific 

literature and the popular media. The widespread interest was in particular driven by their 

potential role in imitation and thus in a fundamental aspect of social cognition (Iacoboni 

2005; Rizzolatti and Sinigaglia 2010). In follow-up studies, neurons with mirror properties 

have been found in different parietal and frontal areas of monkeys and other species, 

including humans (Rizzolatti and Sinigaglia 2016). 

The mirror neuron system has also been associated with action perception. In fact, others’ 

action anticipation and comprehension might be achieved both by the ventral route 

(Middle Temporal Gyrus – MTG - and the anterior Inferior Frontal Gyrus - aIFG), and the 

dorsal route (Inferior Parietal Lobule – IPL - and the posterior Inferior Frontal Gyrus - 

pIFG). The dorsal stream may support this process by reactivating the most likely action 

needed to achieve the predicted goal. In line with this account, action discrimination could 

rely on internal forward models (Flanagan and Johansson 2003; Kilner et al. 2004) to 

anticipate the unfolding of a given action (Schütz-Bosbach and Prinz 2007). 
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Mirror neuron system in humans 

Immediately following the initial reports of mirror neurons in the macaque brain, the 

existence of an analogous mechanism in humans was discussed. While some authors 

argued that clear evidence of a human mirror neuron system was still lacking (e.g. 

Dinstein 2008; Lingnau et al. 2009; Turella et al. 2009), further and numerous results 

coming from various techniques such as transcranial magnetic stimulation (TMS; Fadiga 

et al. 2005; Naish et al. 2014), electroencephalography (EEG; Fox et al. 2016), functional 

magnetic resonance imaging (fMRI; Hardwick et al. 2018) and human single-cell 

recordings (Mukamel et al. 2010) revealed the existence of a fronto-parietal network with 

mirror-like properties in humans (Rizzolatti and Sinigaglia 2010).  

Based on human brain-imaging data (Rizzolatti et al. 1996; Decety et al. 1997; Iacoboni 

et al. 1999) and cytoarchitecture (Petrides 2005), the ventral premotor cortex and the pars 

opercularis of the posterior inferior frontal gyrus (Brodmann area 44) were assumed to be 

the human homologues of macaque mirror area F5. Later, the rostral inferior parietal 

lobule was identified as equivalent to the monkey mirror area PF/PFG (Rizzolatti et al. 

2001; Rizzolatti and Craighero 2004). 

In parallel, EEG research showed that event-related synchronization and 

desynchronization of the mu rhythm (rolandic alpha band) were linked to action 

performance, observation and imagery (Pineda 2008; Fox et al. 2016). These results 

suggest that Rolandic mu event-related desynchronization (Cochin et al. 1998; Babiloni 

et al. 2002) during action observation reflects activity of a mirror-like system present in 

humans (Sebastiani et al. 2014; Fox et al. 2016; Lapenta et al. 2018). 

Finally, single-pulse TMS over the primary motor cortex (M1) and motor evoked potentials 

(MEPs) amplitude were employed as a direct index of corticospinal recruitment 

(Corticospinal Excitability - CSE). Using this technique, several studies showed a 

modulation of MEPs amplitude during action observation matching various changes 

occurring during action execution (Fadiga et al. 1995; for a review please see: Fadiga et 

al. 2005; Naish et al. 2014; D’Ausilio et al. 2015).  
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The coordination of our own actions with those of others requires the ability to read and 

anticipate what and how our partner is about to do. Indeed, when observing someone 

else moving, we can extract useful information such as future bodily displacements 

(Flanagan and Johansson 2003; Blakemore and Frith 2005; Falck-Ytter et al. 2006) or 

infer higher-order cognitive processes hiding behind those actions (Becchio et al. 2008; 

Soriano et al. 2018). In principle, knowledge about the invariant properties of movement 

control (Flash and Hogans 1985; Bennequin et al. 2009) could support inferences about 

the unfolding of other’s actions (Dayan et al. 2007; Casile et al. 2010). In this regard, it 

has been proposed that these inferences may be based on a direct match between actor’s 

sensorimotor activations during Action Execution (AE) and observer’s sensorimotor 

activations triggered by Action Observation (AO; Rizzolatti et al. 2001; Rizzolatti and 

Craighero 2004; Rizzolatti and Sinigaglia 2016). Indeed, using Corticospinal Excitability 

(CSE), motor recruitment during AO was shown to replicate the spatio-temporal sequence 

of motor commands implemented by the actor (for a review please see: Naish et al. 2014). 

This idea is however challenged by the redundancy that characterizes the organization 

of human movement (Kilner 2012; D’Ausilio et al. 2015; Hilt et al. 2017). The abundance 

of degrees of freedom available during AE suggests that different joint configurations, as 

well as spatio-temporal patterns of muscle activity, can equally be used to reach the same 

behavioral goal (Bernstein 1967). In this regard, a strong version of the direct-matching 

hypothesis (Rizzolatti et al. 2001; Rizzolatti and Craighero 2004; Rizzolatti and Sinigaglia 

2016) explains inferences when a direct relationship exists between muscle recruitment, 

movement kinematics and behavioral goals (e.g. simple finger movements). However, it 

is less clear how other’s complex movements (i.e. multi-joint movements) are transformed 

onto the observer’s motor representations. In this case, any sensorimotor-based 

inference about other’s actions amounts to finding a solution to a many-to-many mapping 

problem.  

Here we suggest that a simpler mapping exists between behavioral goals and the lower 

dimensionality space of whole-body configurations (i.e. synergies; Hilt et al. 2017). In fact, 

although a handful of kinematic solutions are biomechanically valid, everyday actions (i.e. 

reaching for an object on the floor starting from a standing posture) are usually performed 



 
D2.2  

DISSEMINATION LEVEL: PU 

 

JUNE 2021 
10 / 67 

 
 

via a limited number of possible kinematic configurations of the biomechanical chain (e.g. 

“ankle” and “hip” strategies for postural control; Horak and Nashner 1986; Berret et al. 

2009). On the top of that, each individual carries his own robust and yet unique way of 

moving (Individual Motor Signature – IMS; Hilt et al. 2016; Słowiński et al. 2016). For 

instance, in a whole-body reaching task Hilt and collaborators (Hilt et al. 2016) showed 

low intra-subject motor variability, accompanied by a large inter-subject variability. The 

inherent lower dimensionality of whole-body postural control and the presence of robust 

Individual Motor Strategies (IMS) suggest the existence of a simpler AO-AE mapping that 

may be a function of everyone’s individual movement style. Backed by this, we 

hypothesize that while observing others’ multi-joint actions, people build sensorimotor-

based predictions by referencing what they see to the motor engrams of their own IMS. 

To verify our hypothesis, we asked naive participants to first perform and then observe a 

whole-body reaching action which could be executed with numerous IMSs generally 

spread within a continuum between two “extreme” patterns (ankle and knee strategies; 

Hilt et al. 2016). After characterizing subjects’ own IMS during execution, we measured 

their sensorimotor recruitment (CSE) by administering single-pulse Transcranial 

Magnetic Stimulation (TMS) on their motor cortex while they observed an actor achieving 

the same goal by using the two “extreme” patterns of IMSs. CSE was measured from the 

cortical representation of the Tibialis Anterior muscle (TA) that shows a clearly dissociable 

pattern while executing the two IMSs. To exclude potential carry-over effects between 

action execution and observation, the same subjects were also tested several months 

later in the action observation task only. 
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Figure 1: Illustration of the main results. MEPs amplitudes are depicted when observing 

knee (blue stick figure) or ankle (red stick figure) stimulus, for a subject that performed 

the knee (A) or the ankle (B) IMS in AE. Our results showed that corticospinal excitability 

was greater when actor and observer IMSs differ the most. These results agree with the 

predictive coding hypothesis that hypothesize the existence of a distance computation 

between observed movement and observer’s IMS.  

 

CSE was modulated at the single subject level according to the “distance” between actors’ 

and observer’s IMS: larger CSE modulations are associated with the observation of a 

more different IMS. This result is schematically illustrated in Figure 1 for two hypothetical 

subjects having extreme IMSs. Importantly, motor priming effects elicited by the action 

execution task can be excluded considering that the same pattern of results, in the same 

subjects, was shown several months later and in the absence of any action execution 

task.  

Our results are at odds with a strictly simulative account of others' actions. Instead, the 

fact that sensorimotor activities during AO are shaped around a measure of distance 

between observed and own IMSs, agrees with the predictive coding framework. In this 

model, prior motor knowledge provides critical top-down signals that are integrated with 

bottom-up sensory-based processing (Friston 2010; Friston et al. 2011). To do so, a 

comparison between predicted (own IMS) and observed kinematic information (others’ 

IMS) generates a prediction error signal that is used to update the representation of 

other’s action. 
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Overall our data suggest that a greater uncertainty about other’s action will call for a 

greater need of trustful predictions and consequently greater sensorimotor recruitment. 

In this context, the present study adds direct neurophysiological evidence that prediction 

errors are estimated by accessing IMS-related information. In fact, the many-to-many 

mapping problem in other’s (multi-joint) action discrimination might be solved by 

accessing knowledge about IMSs. Indeed, the stability of IMSs (Słowiński et al. 2016; 

Coste et al. 2017) may reflect the implicit control and prioritization of a limited number of 

internal parameters during action planning and execution, partly solving the motor 

redundancy problem.  
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2.1.6 Investigate singularity in ellipses drawing 
 

The goal of the experiment is to identify a high level feature able to characterize 

movement of different people. More in detail, this feature will be detected in writing 

movements over drawings of a geometrical shape such as an ellipse. Since the 

movement of each person are different from another one, this high level feature is called 

singularity  and can be represent the first point to assess motion signature of people. 

However, this is only the first step of this experiment and in the future, also the perception 

of the movement will be investigated. 

Measuring singularity can contribute to many application fields, from the clinical to 

entertainment and customer applications.  

In the first experiment we have focused on motor signature aspect: people try several 

times the drawing of the same ellipse under several conditions. More in detail, these 

conditions characterize the hand that draws the ellipse (both right and left hand are 

investigated = 2) and the drawing speed (slow, normal and fast = 3) for a total of 2x3 

conditions. Moreover, for each condition the participant repeat the experiment 10 times 

drawing at each repletion of the experiment 7 ellipses. Therefore, the cardinality of the 

datasets is obtained by 14 (the number of participants) x 2 (hands) x 3 (speeds) x 10 

(trials) x 7 (ellipses) = 5880 available ellipses. 

Data are collected using a graphic table and the available raw data for each ellipse are 

the positions on the screen (x and y position), the velocity, the curvature and the pressure 

on the tablet. 

From the hierarchy presented in the dataset, we focused our analysis identifying two 

different scenarios able to determine the behavior of the model trained. These 2 

scenarios, providing different sensibilities on data used in training set, can be used to 

understand and estimate the algorithm behavior on unseen or new data. The 2 scenarios 

are: 

● Leave-One-Hand-Out (LOHO): the learning set of our classifier is made up of all 

people of the dataset except the information coming from one hand of the tested person. 
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This scenario is interesting because one hand is the dominant one and can be very 

relevant in the final classification. 

● Leave-One-Speed-Out (LOSO): the learning set of our classifier is made up of all 

people, all hands and all speeds in the dataset, except one speed coming from the tested 

person. In this case, the learning set contains more information respect to the previous 

scenario and this will be reflected in higher recognition results. 

 

To study the singularity, machine learning models are used to classify the drawings of 

people. In particular, both shallow models and deep learning ones are exploited. As 

results, we will show the goodness of a multiple temporal scales approach respect 

traditional ones that not taking into account this intrinsic aspect of the human movement. 

 

Traditional machine learning model 
Traditional machine learning models can provide stable and robust results but in order to 

improve their recognition performances, features that can describe and catch the 

behavior over time are needed.  

In this experiment we have performed this operation, which is called Feature Extraction 

or Feature Engineering (FE), segmenting ellipses in several ways in order to find which 

representation can improve the final outcome. In particular, we have used the following 

splits: 

a) More straight parts and more linear parts are considered separately (Figure 1.(a)); 

b) First half end second half of the ellipse are considered separately (Figure 1.(b)); 

c) Each curve and each linear parts are considered separately (Figure 1.(c)); 

d) Respect the case (c), we further considered each linear part divided in according 

to the diagonal (Figure 1.(d); 

e) All the previous splits are considered at the same time. 
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Figure 1: The ellipse criteria of segmentation. 

 

As a consequence, for each criteria of segmentation, we extracted statistical feature on 

the different sections of the ellipses. 

A powerful algorithm, both in terms of theoretical properties and practical effectiveness 

(Fernández-Delgado et al 2014, Wainberg et al. 2016), for classification is Random Forest 

(RF) developed in (Breiman et al., 2001) for the first time. RF is composed of the union 

of multiple Decision Trees (Rokach et al. 2008). Compared to DTs, RF introduces an 

additional degree of randomness due to the introduction of a bootstrap phase. 

 

Finally, a Feature Ranking (FR) step is computed in order to discover the most relevant 

section of an ellipse. Once a model is built, it is often required to understand how this 

model exploits, combine, and extract information in order to understand if the learning 

process has also cognitive meaning, namely it is able to capture the underline 

phenomena and does not just capture spurious correlation (Calude et al., 2017; Guyon 

et al., 2003)  by comparing the knowledge of the experts with the information learned by 

the models. FR therefore represents a fundamental phase of model checking and 

verification, since it should generate results consistent with the available knowledge of 

the phenomena under exam provided by the experts. 

FR methods based on RF are one of the most effective FR techniques as shown in many 

research (Genuer et al., 2010; Saeys et al., 2008). Several measures and approaches 

are available for FR in RF. One method is based on the Permutation Test combined with 

the Mean Decrease in Accuracy (MDA) metric, where the importance of each feature is 

estimated by removing the association between the feature and outcome of the model. 

For this purpose, the values of the features are randomly permuted (Good et al.; 2013) 

and the resulting increase in error is measured. In this way also the influence of the 

correlated features is also removed. Note that, in our case, as a feature we do not intend 

a particular engineered feature but a particular ellipse section (e.g.the first section when 

split= 6, the second curve sections when split=4, etc.). 
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Deep Learning models 
A parallel approach is related to the use of Deep Learning (DL) models. As we know, 

these architectures are automatically able to extract the best set of features from raw 

data. This implies that the feature engineering step and therefore, the sections split, are 

not needed anymore. 

To better understand multiple time-scales we can follow different approaches in DL. 

Architectures such as Clockwork-RNN (Koutnik et al., 2014) or Multi-LSTM (Liu et al., 

2015) are designed to automatically detect multi-time scales information. Other models 

such as LSTM (Hochreiter et al., 1997), simply RNN, Multi-Layer Perceptron (MLP), are 

not directly thought to handle this problem but can provide excellent results if properly 

used. To overcome this limitation we decided to rely on TCN residual blocks (Bai et al., 

2018, Lee et al., 2017) which is capable to learn different temporal scales for each raw 

input time series. The proposed architecture is reported in Figure. The peculiarities of the 

proposed Deep Multi Scale Models architecture based on TCN, which is visible in Figure 

2, are mainly three: first the convolutions in the architecture are causal,  namely  there  is  

not  information  leakage  from  future  to  past,  second the architecture can handle 

different sequence lengths and map it to an output sequence  of  the  same  length  as  

the  LSTM,  and  finally  is  able  to  handle  long effective history. 
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Figure 2: The proposed Deep Multi Scale Models architecture based on TCN. 

 

To provide a complete comparison respect to the model that belong to the state-of-the-

art in Machine Learning, we analyzed both LSTM and Multiple Temporal-Scales TCN. 

Moreover, as for the shallow models, to understand  what parts of the time series (velocity, 

radius or pressure) mostly contribute to the decision, we decides to exploit the Gradient 

weighted Class Activation Mapping (Grad-CAM) () techniques on top of the learned 

model. Grad-CAM allow to easily visualize the most important part of the input time series 

since it extends traditional class activation maps and can be applied to a broader variety 

of architectures. In fact, the result of Grad-CAM is a localization map that highlights key 

sections in an input for a given class, providing insights on where neural networks focus 

their attention. 
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Recognition performances in LOHO and LOSO 
Let discuss now the recognition performances obtained in the two scenarios we identified. 

Table 1. reports the percentage of accuracy, in the LOHO and LOSO scenarios 

respectively, when exploiting RF (with the different criteria of segmentation of the ellipses 

described in Section Traditional Machine Learning), LSTM and TCN for each of the 14 

subjects together with the average across the subjects. 

  

 

Table 1: Percentage of accuracy when exploiting RF (with the different criteria of segmentation of the 

ellipses, LSTM and TCN for each of the 14 subjects together with the average across the subjects. 
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Table 1. allows to observe that: 

• as one might expect performances on LOSO are generally higher than the ones 

on LOHO for all subjects and algorithms. This is the natural consequence of the fact that 

in LOHO we are asking a more complex extrapolation capability to the algorithms; 

• TCN consistently outperform RF and LSTM in all scenarios while demonstrating 

also consistent performance between subjects; 

• RF is quite competitive and outperform, for some subjects, also TCN. 

Nevertheless, for some subjects, performance are quite poor; 

• RF in case (a) and (b) performs quite well. These results indicate that segmenting 

too little or too much the ellipse is not a good solution while putting all the possible 

segmentations, as in case (e), does not guarantees optimal performance. In fact, these 

segmentation designed to capture multiple time scales are, by construction, fixed and not 

customized for the specific problem. The TCN-based architecture, instead, actually learns 

the correct time scale to focus on; 

• LSTM, as expected, is the algorithm which demonstrates the lowest performance. 

This is due to the fact that its ability to capture different time scales is too limited. 

In order to better understand what the different RF and TCN models actually learned from 

the data, Table 2. reports the sections ranking. The letter indicates the sectioning and the 

number indicates the specific section so note that c.1 is the same as d.1 and c.3 is the 

same as d.4. performed with RF in the different sectioning scenarios and Figure 3. reports 

the attention maps of TCN, averaged across subjects, for pressure p(t), velocity v(t) and 

radius r(t) for both LOHO and LOSO scenarios. 

 

Table 2: Sections ranking performed with RF in the different sectioning scenarios for both LOHO and LOSO 

scenarios. 
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Figure 3: Attention maps of TCN, averaged across subjects, for $v(t)$, $r(t)$, and $p(t)$ for both LOHO 

and LOSO scenarios. The more intense is the colour, the more important is the particular part of the input 

time series. 

 

Table 2. and Figure 3. allow to observe that: 

• as one might expect, the sections in the two scenarios are not exactly the same 

since they try to extrapolate with respect to different information (hand and speed). When 

using shallow models (i.e., RF) for sectioning (a), (b), and (c) sections maintain the same 

importance in both LOHO and LOSO scenarios while for sectioning (d) and (e) the ranking 

is quite different. When using deep models (i.e., TCN), instead, only for v(t) the attention 

map remain similar for both LOHO and LOSO scenarios; 

• for both LOHO and LOSO scenarios, shallow models identify as the most 

informative sections those who are closer to the initial part of the drawing in all the 

analysed sectioning criteria. On the other hand, deep models generally find the final parts 

of the drawing as most informative. This shows how different is the perception of the two 

models. The shallow ones focus on the “preparation” of the movement, while the deep 

ones focus more on the “completion” of the movement. The deep model, in this case, 

perceives the movement in a way which seems more similar to a human: human beings 

tend to become more confident in labelling a movement when it tends to be completed; 

• shallow models primarily focus on more “linear” sections with respect to the more 

“curved ones”. The opposite happens for deep models. Also in this case, deep model 

perception is more similar to human one: human tends to distinguish movements based 

on the most complex parts;  
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• finally note that shallow models tend to focus on sections based on the particular 

choice of the sectioning criteria and are not able to perceive and define their one way of 

understanding the movement. Deep models, instead, by construction are able to do so 

defining the attention maps based on the particular problem and defining implicitly their 

own sectioning criteria then being able to perceive the different time scales of the 

movement. 
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2.1.8 Perception of the origin of full body human 
movement and its propagation 
 

We further developed and extended the approach proposed in (Kolykhalova et al., 2020, 

Gnecco et al., 2020). In particular, we investigated a more complex skeletal structure, in 

which each cluster of joints is associated to a specific joint in the simpler 20-joint skeletal 

structure. This allows one to analyze movement at a finer interacting spatio-temporal 

scale in a multiple-scale approach. Another development regards using a vector of 

movement-related features to compute the Shapley value, in order to get a comparison 

with the results obtained in Kolykhalova e al. (2020), where only speed was used as a 

feature. 

Incorporate multiple temporal scales. For example, one could look at a fast temporal scale 

at a first step of the analysis of the origin of movement, then at a slower temporal scale 

where one can analyse the origin of movement at a higher level. 

 

Applying the methodology to analyse the emergence of the origin of movement when two 

persons or small groups are involved in the movement itself is the next step. We are 

currently running collaboration with EuroMov looking into multi-person scenarios.  

A recent paper (Matthiopoulou et al., 2020) including preliminary results on some of these 

extension of the theory was presented in a joint UNIGE-EuroMov paper at the ACM ICMI 

2020 EnTimeMent Workshop. The additional features investigated therein (beside speed) 

were tangential acceleration and angular momentum. Moreover, we investigated therein 

the loss in information associated with the reduction of the original 62-joint skeletal 

structure to a 20-joint one, after a manual clustering of joints performed on the original 

structure. An additional feature, called “mass distribution”, was also defined. Loosely 

speaking, such feature quantifies how much each cluster of joints behaves as a rigid 

body. A small coefficient of variation of that feature is then associated with a small loss of 

information when moving from the more complex skeletal structure to the less complex 

one. As an example, Table 1 illustrates, for a specific fragment, the coefficients of 

variation obtained for some clusters of joints (excluding the ones made by a single joint). 
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Table 1 

 

Some comparison of the proposed approach when it was applied to different movement 

related features (speed, tangential acceleration, angular momentum) are reported in 

Table 2. A comparison with random choice is also reported. The table shows that, for the 

specific fragment analyzed, the proposed method worked much better than random 

choice (whose expected average classification accuracy was 5%, being the reduced 

skeletal structure made by 20 joints). Moreover, the largest agreement between the 

labeled origin of movement and the one predicted by the proposed method was achieved 

when speed was the adopted feature, and both the first and second largest Shapley 

values were produced as output by the method (i.e., the origin of movement was 

evaluated to be identified correctly when at least one of the two joints coincided with it).  

 

Table 2 

 

A theoretical analysis of the effects of large-dimensional classification was developed in  

(Kůrková and Sanguineti, 2021) from a probabilistic point of view. 

As regards the acquisition of new data regarding the dyadic scenario, a set of recordings 

was created, based on a pair of participants exchanging a ball launched using both hands 

at a distance of about 3m from each other. Two different balls were used, one light (about 

100g), and one heavier (about 2Kg). We defined three conditions for the repeated 

exchange of the ball to each other: fair (the launcher tries to facilitate the receiver), hit/hurt 
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(the launcher tries to hit the receiver), misleading (the launcher tries to reduce the success 

of the receiver by misleading actions). 

In the dyadic scenario several complementary research questions emerge, for instance : 

(i) investigating the origin of movement in the sender and in the receiver, (ii) determining 

at which time scale the origin of movement is perceived, (iii) evaluating the 

synchronization and anticipatory behaviour between sender and receiver, (iv) evaluationg 

leader-follower behaviour in the different emotions, (v) and how the origin of movement 

contributes to capture those different emotions. We are currently working in these 

research directions. 
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2.1.11 Computation-Based Feature Representation 
of Body Expressions in the Human Brain 
 

For a full description please see: Poyo Solanas, Marta, Maarten Vaessen, and Beatrice 

de Gelder. "Computation-Based Feature Representation of Body Expressions in the 

Human Brain." Cerebral Cortex (2020). 

 

Humans and other primate species are experts at recognizing body expressions. To 

understand the underlying perceptual mechanisms, we computed postural and kinematic 

features from affective whole-body movement videos and related them to brain 

processes. Using representational similarity and multivoxel pattern analyses, we showed 

systematic relations between computation-based body features and brain activity. Our 

results revealed that postural rather than kinematic features reflect the affective category 

of the body movements. The feature limb contraction showed a central contribution in 

fearful body expression perception, differentially represented in action observation, motor 

preparaton, and affect coding regions, including the amygdala. The posterior superior 

temporal sulcus differentiated fearful from other affective categories using limb 

contraction rather than kinematics. The extrastriate body area and fusiform body area 

also showed greater tuning to postural features. The discovery of midlevel body feature 

encoding in the brain moves affective neuroscience beyond research on high-level 

emotion representations and provides insights in the perceptual features that possibly 

drive automatic emotion perception. 

It is widely agreed that humans and other primate species are experts at recognizing 

emotion and intention from face and body expressions (de Gelder 2006; Giese and 

Rizzolatti 2015). The central importance of nonverbal communication across many social 

species suggests that the brain is equipped for rapid and accurate face and body 

movement perception; yet, the mechanisms underlying this ability are still largely unclear. 

Previous research on face and body expressions has predominantly searched for brain 

correlates of symbolic emotion categories (Lindquist et al. 2012; Kirby and Robinson 

2017), disregarding the visual features that drive movement and emotion perception (e.g., 
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kinematic and postural body features). This is in part due to the fact that methods for fine-

grained description of body movements were not yet available. This study used 

computational descriptions of body expressions to investigate which features drive 

emotion and body perception and how they are encoded in the brain. 

Previous behavioral and computational studies have provided some indications about 

relevant features of body posture and movement, and their relation to emotional 

expressions (De Meijer 1989; Wallbott 1998; Roether et al. 2009; Kleinsmith and Bianchi-

Berthouze 2012; Piana et al. 2014; Patwardhan 2017). Some important postural features 

have been identified, including elbow flexion, associated with the expression of anger, 

and head inclination, typically observed for sadness (Wallbott 1998; Coulson 2004; 

Vaessen et al. 2018). Other form-related features that have been investigated are the 

vertical extension of the body (e.g., upper limbs remain low for sadness but high for 

happiness), the directionality of the movement (e.g., angry bodies are usually 

accompanied by a forward movement), symmetry (e.g., the movement of the upper limbs 

tends to be symmetrical when experiencing joy), and the amount of lateral opening of the 

body (e.g., hands are close to the body during fear and sadness while extended in 

happiness) (Kleinsmith and Bianchi-Berthouze 2012).  

A central, yet unanswered, question is the relation between candidate features and brain 

processes. There is sparse evidence in the literature on how particular features may be 

related to brain processes. One classical proposal is the two-stream model of visual 

processing with two separate brain pathways for form and movement information (Vaina 

et al. 1990; Giese and Poggio 2003; Milner and Goodale 2006, 2008). From the primary 

visual cortex, the dorsal stream leads to the parietal lobe and is specialized in localizing 

objects in space, processing motion signals and in the visual-spatial guidance of actions. 

The ventral stream leads to the temporal lobe and is responsible for visual form 

processing and object recognition. Two areas in this pathway have been identified that 

sustain a certain level of specialization in the processing of whole bodies and body parts: 

the extrastriate body area (EBA) in the medial occipital cortex, and the fusiform body area 

(FBA) in the fusiform gyrus (Downing et al. 2001; Peelen and Downing 2005; Schwarzlose 

et al. 2005). However, their respective functions are not yet clear and it is also not clear 
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how they, alone or together, contribute to body expression perception. In addition, body 

shape and movement elicit a widespread neural response beyond the visual analysis of 

body features in body-category selective areas (de Gelder 2006; Van den Stock et al. 

2011), triggering processes related to their affective content, the conveyed action and for 

the preparation of an appropriate behavioral response (de Gelder et al. 2004; Van den 

Stock et al. 2011). The present study is the first effort to discover which specific postural 

and kinematic features could be computed from affective whole-body movement videos 

and be related to brain responses. By means of representational similarity multivoxel 

pattern analysis techniques, we investigated whether the (dis)similarity of body posture 

and kinematics between different emotional categories could explain neural responses to 

body expressions in and beyond body-selective regions. 

 

 

 

Figure 7: Representational dissimilarity matrices of the kinematic and postural features. (A) Examples of 

frames from the different affective movement videos with the OpenPose skeleton. Note that participants 

were shown the videos without the OpenPose skeleton; (B) The RDMs represent pairwise comparisons 

between the 16 stimuli with regard to the kinematic (i.e., velocity, acceleration, and vertical movement) and 

postural features (i.e., limb angles, symmetry, shoulder ratio, surface, and limb contraction) averaged over 

time. The dissimilarity measure reflects Euclidean distance, with blue indicating high similarity and yellow 
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high dissimilarity. Color lines in the upper left corner indicate the organization of the RDMs with respect to 

the emotional category (anger: red; happiness: yellow; neutral: green; fear: purple) of the video stimuli. 

 

We aimed at investigating whether the (dis)similarity of body posture and kinematics 

between different emotional categories could explain the neural response of brain regions 

involved in body processing. For this purpose, several areas were defined as ROI and 

their neural RDMs were computed and correlated to the emotional and feature RDMs. 

The ROIs included occipito-temporal areas that have previously shown a certain level of 

body specificity (three ROIs: FBA, EBA, and pSTS) (Downing et al. 2001; Peelen and 

Downing 2005; Schwarzlose et al. 2005; Kontaris et al. 2009; Vangeneugden et al. 2014), 

parietal and temporal areas thought to be implicated in attention and action observation 

(six ROIs: V7/3a, SPOC, SMG, pIPS, mIPS, and aIPS) (Culham and Valyear 2006; 

Grafton and Hamilton 2007; Corbetta et al. 2008; Caspers et al. 2010), and frontal areas 

involved in action observation and other higher cognitive functions (six ROIs: PMv, PMd, 

SMA, pre-SMA, inferior frontal,and frontal regions) (Grafton and Hamilton 2007; Caspers 

et al. 2010). See Figure 8 for the full results. 
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Figure 8: Average Spearman’s rank correlation across participants between the kinematic/postural 

feature RDMs and each ROI matrix. Kinematic features include velocity, acceleration, and vertical 

movement. Postural features comprise shoulder ratio, surface, limb contraction, symmetry, and limb 

angles. Positive r values indicate that a high (dis)similarity between a stimulus pair in the feature RDM 

also has a high (dis)similarity in the neural representation. A negative correlation means that a low 

(dis)similarity between two stimuli at the feature level would have a higher (dis)similarity in the neural 

representation. Asterisks and rhombi indicate significant correlations after BHFDR correction and 

correlations that presented significant uncorrected P-values, respectively (one sample t-test against 

0, two-tailed). The error bars denote the standard error of the mean (SEM). Order or relationships 

across ROIs are not assumed here. Abbreviations: EBA, extrastriate body area; EVC, early visual 

cortex; FBA, fusiform body area; IF, inferior frontal cortex; IPS, intraparietal sulcus; p, posterior; m, 

middle; a, anterior; PMd, dorsal premotor cortex; PMv, ventral premotor cortex; pre-SMA, 

presupplementary motor area; pSTS, posterior superior temporal sulcus; SMA, supplementary motor 

area; SMG, supramarginal gyrus; SPOC, superior parietal occipital cortex. 

 



 
D2.2  

DISSEMINATION LEVEL: PU 

 

JUNE 2021 
34 / 67 

 
 

We also investigated whether (dis)similarities in body posture and kinematics between 

different emotional categories could explain the neural response at the whole-brain level. 

The computed feature RDMs were compared with the multivoxel dissimilarity fMRI 

patterns by means of searchlight RSA. The velocity RDM was positively correlated to 

inferior frontal sulcus and precentral gyrus. Negative main effects for acceleration were 

found in middle temporal, superior frontal, and postcentral sulci while no positive main 

effects were observed for this feature. Vertical movement correlated positively with 

cingulate gyrus, whereas negatively to the frontomarginal and middle temporal gyri. With 

respect to postural features, limb angles showed a positive main effect in anterior insula 

and pSTS. Several areas negatively correlated to symmetry in the inferior and middle 

occipital gyri, precuneus, isthmus, anterior calcarine, intraparietal, and cingulate sulcus. 

Shoulder ratio negatively correlated to anterior insula, frontal operculum, putamen, ACC, 

middle frontal gyrus, cingular insular sulcus, claustrum, internal capsule, and 

parahippocampal gyrus. Surface showed main negative effects in posterior orbital gyrus, 

thalamus, anterior perforated substance, ACC, inferior and superior frontal sulci, 

putamen, and internal capsule. Only positive correlations to limb contraction were found 

in intraparietal sulcus, anterior insula, caudate nucleus, amygdala, superior frontal sulcus 

and gyrus, precuneus, posterior orbital gyrus, ACC, superior temporal gyrus, inferior 

precentral sulcus, and SMG (see Figure 9). 

 

 

 

 



 
D2.2  

DISSEMINATION LEVEL: PU 

 

JUNE 2021 
35 / 67 

 
 

 

Figure 9: Clusters resulting from the searchlight RSA of the postural feature of limb 

contraction. The multivoxel fMRI dissimilarity matrices were correlated to the limb 

contraction RDM (upper left corner). The limb contraction RDM represents pairwise 

comparisons between the 16 stimuli with regard to limb contraction information averaged 

over time. The dissimilarity measure reflects Euclidean distance, with blue indicating high 

similarity and yellow high dissimilarity. Color lines indicate the organization of the RDM 

with respect to the emotional category (anger: red; happiness: yellow; neutral: green; fear: 

purple) of the video stimuli. Spearman’s rank correlation was used to correlate the limb 

contraction RDM to the multivoxel fMRI dissimilarity matrices. The resulting maps were 

z-transformed for each participant. Subsequently, a group-level one-sample t-test against 

0was performed (two-tailed, cluster size corrected with Monte-Carlo simulation, alpha 

level = 0.05, initial P = 0.005, numbers of iterations = 5000). See Supplementary Table 

R5 in Supplementary Results for more details on location and statistical values of the 

clusters. Abbreviations: ACC, anterior cingulate cortex; AMYG, amygdala; IPL, inferior 

parietal lobule; MTG,middle temporal gyrus; pIPS, posterior intraparietal sulcus; PMv, 

ventral premotor cortex; SFG, superior frontal gyrus. 
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The present study investigated the mechanisms underlying body expression perception 

by measuring the brain representation of critical features of body movement and posture. 

Our results reveal six major findings. First, computationally defined features are 

systematically related to distributed brain areas. Second, postural rather than kinematic 

features reflect the affective category structure of the body movements. Limb angles and 

symmetry were important for differentiating neutral from emotional body movements. 

Limb angles and especially limb contraction were particularly relevant for distinguishing 

fear from other body expressions. These two features were represented in several 

regions including affective, action observation and motor preparation networks. Third, the 

pSTS differentiated fearful from other affective categories using limb contraction rather 

than kinematics, despite this area being known for its involvement in biological motion 

processing. Fourth, EBA and FBA also showed greater tuning to postural features. 

Although the pattern of feature representation in these areas was similar, the stimuli 

representation in EBA was very dissimilar to that of FBA, possibly reflecting their different 

roles in body processing. Fifth, kinematic and postural feature processing was not 

segregated into dorsal and ventral streams, with the exception of one feature: velocity. 

Finally, the brain representation of emotional categories showed a distributed pattern.  

By investigating mid level feature processes, this study moves the field of affective 

neuroscience forward, providing insights into the perceptual features that possibly drive 

automatic emotion perception. Features at this visual computational level may only partly 

overlap with feature descriptions used in everyday descriptions of body expressions 

(Poyo Solanas et al. 2020). Nevertheless, it is important to be aware of the limitations of 

our findings. For instance, the features defined here were selected due to their relevance 

in the literature because no feature-based and biologically plausible computational model 

of naturalistic body expressions is available (Giese and Poggio 2003; Serre 2014). We 

expect that future studies will also use larger and more diverse stimulus sets with a wider 

range of affective states and a larger participant sample, also looking into dyadic 

interactions. 
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2.1.14 Automatic Detection in the Context of 
Movement with Chronic Pain based on Novel 
Multiple-Timescales Machine Learning Architectures 
 

In this section, we present the results of the exploration of our novel machine learning 

architectures (Body Attention Net, i.e. BANet; Movement in Multiple Time, i.e. MiMT; 

Global Workspace Network, i.e. GWN; and Hierarchical Human Activity Recognition and 

Protective Behaviour Detection, i.e. HAR-PBD, model) on the problem of automatic 

detection of pain and related behaviour from body movement. Please D3.1 for 

descriptions of the BANet and MiMT which we also refer to as Multi Time neural network 

(MTNN) or MultiLevNN. D1.6 and 1.7 provide descriptions of the GWN and Hierarchical 

HAR-PBD model respectively. 

 

Pain behaviour assessment is an important movement analysis problem in the context of 

chronic pain physical activities (Cook et al. 2013; Keefe and Block 1982). Automating the 

assessment of pain behaviour could enable less burdensome, objective measurement as 

well as open up the opportunity to provide real-time tailoring (e.g. via movement 

sonification) which fosters engagement of a person with chronic pain with valued physical 

activities. For example, a sonification framework based on pain behaviour assessment 

could aim to call the attention of a person with pain to their unhelpful strategies for 

performing feared or painful movements (Olugbade et al. 2019). Previous bodily-

expressed pain behaviour detection studies have focused on classification at single 

timescales. For example, (Aung et al. 2016) modelled the duration (as a proportion) of 

pain behaviour in a movement instance based on a simple fusion of motion capture and 

muscle activity data. Pain level itself could be valuable to assess automatically for the 

purpose of enabling helpful pacing of everyday physical activities based on the 

understanding of how pain drives underactivity and overactivity (Olugbade et al. 2019). 

For all 4 investigations (on the BANet, MiMT, GWN, and Hierarchical HAR-PBD 

respectively), we used the EmoPain dataset (Aung et al. 2016) which contains 3D 

positions for 26 full-body joints, 13 full-body angles derived from these, and muscle 
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activity data for 4 upper and lower back locations of people with chronic pain and healthy 

control participants. The data were captured while the participants performed 8 exercise 

movements (sit-to-stand, stand-to-sit, bend, reach forward, walk, sitting, standing, one leg 

raised while standing). People with chronic pain provided self-reports of pain after each 

exercise type on a scale of 0 to 10. Four clinicians further provided annotations for the 

exercise instances of this group of participants, for 6 pain behaviours (guarding/stiffness, 

hesitation, bracing/support, abrupt action, limping, rubbing, stimulation) in continuous 

time and as discrete values 0 for 'not present' and 1 as 'present'. 

 

Study 1: Weighted Fusion of Time and Anatomical Region with The BANet 
 

A contribution of the BANet is its importance weighting of time for each movement 

dimension (e.g. hip angle) and further weighting of each dimension overall. Further details 

can be found in the peer-reviewed publication of the study.  

 

Focusing on 5 (sit-to-stand, stand-to-sit, reach forward, bend, one leg raised while 

standing) of the 8 exercise types in EmoPain dataset, this study was based on the 13 full-

body joint angles of the dataset and the angular energies computed from them. Each joint 

angle is derived from the 3D positions of three consecutive joints while the corresponding 

joint energy is the square of the change in the angle with respect to the previous timestep. 

The angle and energy sequences for each exercise type participant were segmented 

based on fixed window with length = 3 seconds and overlapping ratio = 0.75 based on 

findings in (Wang et al. 2019), within each exercise instance. Zeroes were used to pad 

segments at the end of exercise instance and less than the window length. Two data 

augmentation techniques were then applied to duplicates of these segments to increase 

the data size, i.e. the number of segments. The first of these adds normalized Gaussian 

noise (standard deviation = 0.05, 0.1, and 0.15) to the duplicate (based on Wang et al. 

2019). In the second, randomly selected (probability = 0.05, 0.1, and 0.15) angles and 

energies in the duplicate are dropped, i.e. set to 0 (based on Um et al. 2017). The 

augmentation resulted in 18,653 segments. The ground truth for each segment was set 

https://www.researchgate.net/profile/Chongyang_Wang5/publication/334510336_Learning_Temporal_and_Bodily_Attention_in_Protective_Movement_Behavior_Detection/links/5d2f0eae299bf1547cbd5a51/Learning-Temporal-and-Bodily-Attention-in-Protective-Movement-Behavior-Detection.pdf
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to 'protective behaviour present' if at least 2 of the 4 raters rated any of the pain 

behaviours as present for half of the segment length and 'absent' otherwise. There were 

11,373 protective behaviour absent segments and 7,280 protective behaviour present 

segments. 

 

We evaluated the performance of the BANet on automatic discrimination between 

protective behaviour absent and present classes using leave-one-subject-out cross-

validation. To understand the value of approach used in the BANet, we compared its 

performance on automatic detection of protective behaviour based on these data with the 

performance of 4 variants of the BANet (BANet-compatibility, BANet-dense, BANet-time-

only, BANet-body-only). We also compared the BANet with 3 architectures (bidirectional 

Long Short-Term Memory neural network i.e. LSTMNN, convolutional LSTMNN, stacked 

LSTMNN) which are similar to it but do not include weighting, i.e. the machine learning 

attention mechanism which gives the BANet its name. Table 4 gives an overview of all 8 

architectures explored in this study and the hyperparameters used in training the 

respective models. The Adam optimiser and learning rate of 0.003 was used in all cases. 

 

Table 4: The BANet and 7 peer machine learning architectures that we compared it to. 

 

Architecture 

Attention 

(i.e. 

weighting) 

across time 

Attention (i.e. 

weighting) 

across joint 

(angle) 

Layers Types [number of 

layers, number of units] 

Training 

batch size 

BANet 

Yes 

Yes but after 

time 

attention 

1. LSTM [3, 8] 

2. 1x1 convolution and softmax 

(time attention) 

3. fully connected [2, 8] and 

softmax (joints attention) 

4. fully connected [1, 2] and 

softmax 

40 
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BANet-compatible 

Yes but after 

joints 

attention 

Yes 

1. LSTM [3, 8] 

2. fully connected [2, 8] and 

softmax (joints attention) 

3. 1x1 convolution and softmax 

(time attention) 

4. fully connected [1, 2] and 

softmax 

40 

BANet-dense 

Yes 

Yes but after 

time 

attention 

1. LSTM [3, 8] 

2. fully connected [1, 8] and 

softmax (time attention) 

3. fully connected [2, 8] and 

softmax (joints attention) 

4. fully connected [1, 2] and 

softmax 

40 

BANet-time-only 

Yes No 

1. LSTM [3, 8] 

2. 1x1 convolution and softmax 

(time attention) 

3. fully connected [1, 2] and 

softmax 

40 

BANet-body-only 

No Yes 

1. LSTM [3, 8] 

2. fully connected [2, 8] and 

softmax (joints attention) 

3. fully connected [1, 2] and 

softmax 

40 

Bidirectional 

LSTMNN 
No No 

1. bidirectional LSTM [1, 14] 

and dropout probability of 0.5 
40 

Stacked LSTMNN 
No No 

1. LSTM [3, 28] and dropout 

probability of 0.5 
20 

Convolutional 

LSTMNN 
No No 

1. 1x10 convolution, 28 LSTM 

units, and max pooling 
50 
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The performance of the BANet can be seen in Table 5 in comparison with the other 7 

architectures. As can be seen in the table, the BANet outperforms all of the 7 

architectures. A paired t test over cross-validation folds, with Bonferroni correction, 

showed that this is statistically significant (p<0.05) for every comparison architecture 

except the BANet-time-only and BANet-body-only F(3.072, 89.099)=15.612, 𝜇2= 0.519); 

the significance for the bidirectional LSTM was marginal. 

 

Table 5: Mean F1 score and accuracy of the BANet and comparison architectures (in bold is the best 

performance and * is used to indicate comparison architectures which performed significantly worse, 

p<0.05, than the BANet). 

 

Architecture 

Mean F1 

Score Accuracy 

Number of 

trainable 

parameters 

BANet 0.8440 0.8688 2,131 

BANet-compatible 0.5720* 0.6630 6,204 

BANet-dense 0.7890* 0.8167 65,430 

BANet-time-only 0.7580 0.8060 1,767 

BANet-body-only 0.8310 0.8670 2,023 

Bidirectional LSTMNN 0.8040 0.8460 14,282 

Stacked LSTMNN 0.8120* 0.8534 18,986 

Convolutional LSTMNN 0.7370* 0.8059 40,940 

 

Another advantage of the attention weighting of the BANet is that it allows analysis of 

both temporal and anatomical segment relevance. Figure 9 shows boxplots of the 

distribution of attention scores (i.e. importance weights) for each joint angle (and its 

energy) per exercise type. It can be seen that there is a wider distribution of attention 

scores for the participants with chronic pain, particularly in the exercise segments with 
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protective behaviour absent, compared with the healthy participants. This suggests strong 

salience of a few antomical segments above the others, perhaps in terms of distinction in 

timescale, with protective behaviour. The sample plots of temporal attention scores per 

joint angle and energy in Figure 10 showing larger differences in the timelines for the 

different joint angles supports this theory. 

 

 

Figure 9: Distribution of attention scores for each joint angle (and its energy) per exercise type. The plots 

show healthy participants in green, participants with chronic pain and protective behaviour absent in blue, 

and participants with chronic pain and protective behaviour present in orange. 
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Figure 10: Sample plots of temporal attention per joint angle (and its energy) in a stand-to-sit exercise 

instance for a healthy participant (left) and two participants with chronic pain (middle and right). 

 

We propose a novel neural network architecture named BANet which performs weighted 

fusion of movement time and anatomical regions. This approach outperforms similar 

architectures without explicit weights in fusion, with weights only  for time or anatomical 

region but not both, or with the weighted fusion of anatomical regions before time.  

 

Analysis of these weights, which are learnt by the network based on data, suggests 

stronger differences in timescales of anatomical segments during anomalous movement 

behaviour. First, this highlights that multiple timescales occur not just over time itself but 

also across the different degrees of freedom of movement. We have developed a 

movement sonification framework that aims to apply multi-dimensionality of time 

(attention time and the different times of each degrees of freedom of movement) in chronic 

pain scenarios. On one hand, this could be used to provide self-awareness (attention) in 

real time to a person with chronic pain about how they are moving. On the other hand, it 

could serve as to augment an observer's (the person with pain themselves or a clinician) 

visual assessment of movement. More details about the sonification framework is 

reported in D3.1.  Second, it raises questions about how much the network attention 

weighting tells us about the timescales involved in the interpretation of movement 

behaviour by the clinicians who provided protective behaviour labels. We are carrying out 
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further analyses of the attention scores to understand what they imply in this respect. 

Further, we are additionally conducting an observation study aimed at finding implicit 

models of pain and movement that physiotherapists use to make clinical observations 

and interventions. 

 

Study 2: Using The MiMT to Learn Multiple Timescales of Pain Behaviour 
Labels based on Movement Dimensions with Multiple Timescales 
 

The MiMT models body movement at multiple timescales particularly accounting for 

independence-cum-coordination between multiple anatomical segments similar to the 

BANet but also accounting for different timescales of movement interpretation (at level of 

a single time step and at the level of multiple timesteps). Further details can be found in 

the peer-reviewed publication of the study. 

 

While the joint angles used for Study 1 have the advantage of being location invariant, 

we chose to use the 3D full-body positions of the EmoPain dataset in Study 2 because 

they characterise movement execution in a more intuitive way. We excluded eight of the 

26 joints (left and right fingertips, ankles, heels, and toes) in our use of the positional data 

in this study due to the higher level of noise in their position estimates. To minimise the 

dimensionality of the data, we additionally excluded the crown joint given that the 

remaining joints include the head and neck. This resulted in 17 full-body joints. We 

segmented exercise instances in the EmoPain dataset (except the walking exercises and 

for participants with chronic pain alone) using overlapping 3-second windows based on 

(Wang et al. 2019) (overlap = 0.25 seconds). The label for a frame (timestep) in a segment 

was set as of guarding if at least two raters labelled guarding behaviour as present at that 

frame, otherwise the label was set as not of guarding. The label for a segment (multiple 

timesteps) was set as guarding behaviour if all the frames in the segment are of guarding 

label, not guarding behaviour if all the frames are not of guarding, and mixed otherwise. 

We used data augmentation to increase the minority classes at the segment level 

(guarding behaviour, mixed) by creating mirror duplicates across permutations of the 

three axes (based on Olugbade et al. 2020) as well as translated, scaled up/down 

https://dl.acm.org/doi/pdf/10.1145/3395035.3425969?casa_token=eC2bcONAtMkAAAAA:oQI8m_AAOWghddL_R1BW_L4ReR4hDkjS7dTjvNozDlPhl3WN8lGtTRoAFWc4l8lYRemfQZMw2s4SAQ
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duplicates. This resulted in 17,185 and 1,394 instances respectively for the training and 

validation sets. 

We evaluated the MiMT on automatic discrimination between of guarding and not of 

guarding at the frame level and between guarding, not guarding, and mixed classes at 

the segment level. This evaluation was based on hold-out validation where the subject 

sets in the training, validation, and test sets are mutually exclusive. To understand the 

value of the approach of the MiMT (separate but shared time encoding and multiple 

timescales of the same label), we compared its performance with 3 architectures derived 

by ablation of the MiMT (MiMT-single-input-time, MiMT-frame-output-time-only, MiMT-

segment-output-time-only). Table 6 provides an overview of the differences between the 

architectures. The time encoder of the MiMT (and the comparison architectures) was 

based on 3 LSTM layers each with 3 units. Single LSTM and fully connected layers each 

with 15 units were used for the classifier with additional global average pooling and 

sigmoid activation for the frame level output and a single layer LSTM and softmax 

activation after further multiplication with the time encoder output for the segment level 

output.  Each model was trained with the Adam optimizer at learning rate and batch size 

of 0.005 and 200 respectively. 

 

Table 6: An overview of the architectures compared with the MiMT. 

 

Architecture 

Separate but shared time 

encoding of the input 

Frame level 

output 

Segment level 

output 

MiMT Yes Yes Yes 

MiMT-single-input- time No Yes Yes 

MiMT-frame-output-time-only Yes Yes No 

MiMT-segment-output-time-only Yes No Yes 
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Table 7 shows the performance of the MiMT. As can be seen in the table, the MiMT 

performs much better than chance level detection (0.5 for the frame label, 0.33 for the 

segment label). The MiMT further outperforms its three variants suggesting that 

combination of both the separate but shared time encoding for the input and the multiple 

output timescales is efficacious. 

 

Table 7: Mean F1 score of the MiMT and comparison architectures (in bold is the best performance). 

 

 Mean F1 score 

Architecture Frame label Window label 

MiMT 0.63 0.46 

MiMT-single-input- time 0.50 0.34 

MiMT-frame-output-time-only 0.59 - 

MiMT-window-output-time-only - 0.33 

 

Figure 11 shows two example plots of the activations for each separate (but shared) time 

encoding. To maximise contrast, we only sampled every 20th frame in these plots. Each 

band for each group of segments represents the activation for one of the three units of 

the encoder.  Comparing the bands for the lower left and right limb groups of segments 

clearly show coordination between the two groups of segment yet there are differences 

in changes in the activations over time further highlighting that different degrees of 

freedom have different timescales that have moments of synchronization. 
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Figure 11: Time encoder activation for two different exercise segments (left, right) and two different exercise 

types and participants 

 

Building on the BANet which had different but shared time encoding for different groups 

of anatomical segments, we propose the MiMT architecture that additionally learns 

multiple label timescales simultaneously. Our findings suggest that the two elements are 

together valuable for modelling the multiple timescales in movement data. They further 

highlight the importance of investigating timescales of movement assessment as is one 

of the aims of our observation study with physiotherapists. We plan to extend the MiMT 

by integrating it with other multiple timescales machine learning architectures. 

 

Study 3: Multimodal Movement Data Fusion based on the GWN 
 

The GWN addresses the differences in timescales between multiple modalities of 

movement, using the machine learning attention (i.e. weighting) mechanism for fusion 

similar to the BANet although the attention module it uses is based on self-attention such 

that each modality assigns weights to itself and each of the other modalities. In-depth 

description of the GWN can be found in the peer-reviewed publication of the study. 

In this study, we use both the 3D full-body positions and the muscle activity data of the 

exercise instances in the EmoPain dataset. Since the exercise instances were of varying 

lengths, zero padding at the start of each instance was used to make them of uniform 

https://arxiv.org/pdf/2001.09485.pdf
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lengths. To increase the data size, i.e. the number of instances, the same mirror reflection 

of duplicates used in Study 2 was used here except that the reflection was only done 

around the y-axis. Three rotation angles were used (90°, 180°, 270°) resulting in 800 data 

instances in total. The labels for the instances from the healthy control participants was 

set to no chronic pain. The instances from the participants with chronic pain was labelled 

as with chronic pain. The instances from this group of participants was further labelled as 

zero pain if the participant reported pain intensity of 0 for that instance, low level pain if 

the pain intensity was otherwise ≤ 5, and high level pain for pain intensity > 5. 

 

We explored the GWN in two separate but related classification tasks: recognition of 

chronic pain instances and pain level classification. The evaluation of the GWN in these 

tasks was based on leave-one-subject-out cross-validation. For each task, we compared 

the performance of the GWN with a baseline architecture where fusion of the multimodal 

data is based on simple fusion. Table 8 outlines the difference between the GWN and the 

baseline. In the EmoPain dataset, the two modalities were of the same sampling rate of 

60Hz, the muscle activity data having been downsampled from its original 1000Hz. For 

the recognition of chronic pain instances task, both modalities were further resampled to 

10Hz to manage the dimensionality of the training data. While the positional data has 

3x26=78 dimensions, the muscle activity data has only 4. There were 64 units in LSTM 

layer which serves as attention time encoder and ordinary time encoder for the GWN and 

baseline architecture respectively. The Adam optimisation algorithm was used for training 

the models, with learning rate and batch size of 0.001 and 32 respectively, based on grid 

search.  
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Table 8: An overview of the GWN and the baseline used for comparison 

 

Architecture 

Maps different sampling 

rates and/or degrees of 

freedom in the multiple 

modalities to a uniform 

sampling rate and 

dimensionality 

Weighted fusion of 

multiple modalities 

(based on self-

attention) 

Propagation of the 

weightings over time 

GWN Yes Yes Yes 

Simple concatenation No No No 

 

The performance of the GWN is shown in Table 9. Both the GWN and the baseline 

comparison architecture perform much better than chance level classification (0.5 for the 

recognition of chronic pain instances, 0.33 for pain level classification), the GWN clearly 

outperforms the baseline architecture. A Wilcoxon signed rank test across the cross-

validation folds indeed shows statistically significant difference between their 

performances for the recognition of chronic pain instances in particular. 

 

Table 9: Mean F1 scores of the GWN and the comparison architecture (in bold is the best performance and 

* is used to indicate performance significantly worse, p<0.05, than the GWN). 

 

 Mean F1 scores 

Architecture 

Recognition of chronic 

pain instances 

Pain level 

classification 

GWN 0.92 0.75 

Simple concatenation 0.72* 0.63* 
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We further analysed the self-attention scores of the GWN and found 5 main temporal 

patterns of attention. Table 10 gives an overview of these patterns and Figure 12 gives 

examples of these pattern types. 

 

Table 10: The 5 temporal patterns of self-attention found. 

 

Short 

name Long name 

Pattern (weighting are between 0 and 1 and add 

up to 1 by each modality) 

FIA Favours Itself Always weighting for self > 0.5 100% of the time 

FOS Favours Other Sometimes weighting for self < 0.5 up to 40% of the time 

FIOB Favours Itself and Other in Balance weighting for self > 0.5 40-60% of the time 

FIS Favours Itself Sometimes weighting for self < 0.5 less than 40% of the time 

FOA Favours Other Always weighting for self > 0.5 0% of the time 
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Figure 12: Plots for 2 exercise instances (top and bottom respectively) showing self-assigned attention 

scores versus time (M0 = positional data, M1 = muscle activity data). Plots on the left and right correspond 

to attention scores assigned by Modality 0 (M0) and Modality 1 (M1) respectively. The 'Head' identifier 

refers to the corresponding component of the attention computation ensemble; 'Switch #' refers to the 

number of attention switches that occur over time; and the category identifier refers to the corresponding 

attention pattern in Table 7. 

 

One of the merits of the GWN approach is that it can account for noise with an unknown 

timescale to be accounted for. We demonstrate this by conducting an investigation of the 

effect of noise on the performance of the GWN and comparing the temporal patterns of 

self-attention with and without noise. We use Gaussian noise sampled with standard 

deviation equal to one-tenth of the standard deviation of the respective data modality (i.e. 

noise standard deviation of 10 for the positional data and 0.001 for the muscle activity 

data).  Table 11 shows the performance of the GWN in pain level classification with and 

without noise in the modalities. We found no significant difference (p<0.05) between the 

performance of the GWN in both cases regardless of whether the noise was added to the 

positional data or to the muscle activity data suggesting that the GWN's approach to 

multimodal fusion indeed controls the effect of noise on the automatic detection task.   
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Table 11: Mean F1 scores of the GWN in the pain level classification task with and without noise in the 

modalities. 

 

 Mean F1 scores  

Architecture No noise 

Noise in 3D position 

data 

Noise in muscle 

activity data 

GWN 0.75 0.72 0.72 

 

Table 9 shows how noise affected the distribution of the 5 temporal self-attention patterns. 

For the majority of data instances, the positional data modality assigns a higher weight to 

itself all through the time. For most of the remaining instances, this modality assigns a 

higher weight to the other modality all through time. The muscle activity modality also 

assigns a higher weight to itself all through time for a majority of the data instances, but 

unlike the positional data, for most of the remaining instances it instead shows the FOS 

pattern where it still assigns a higher weight to itself and not the other modality through 

most of time. Although this patterns distribution persists when noise is added to the 

muscle activity data, when noise is added to the positional data the distribution changes 

such that the positional data assigns higher weights to the muscle activity data all through 

time for much more data instances than those for which it assigns higher weights to itself 

all through time. This further highlights that the GWN enables noise in the modalities to 

be addressed in its fusion of multiple modalities. We speculate that the lack of difference 

in pattern distribution when noise was added to the muscle activity data is perhaps due 

to the lower dimensionality (4) of that modality, and so lower impact of noise overall, 

compared to that (78) of the positional data. 
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Table 12: The relative frequency of the 5 temporal attention patterns for each modality (M0=positional data, 

M1=muscle activity data). See Table 7 for the description of the patterns. 

 

 FIA FOS FIOB FIS FOA 

 M0 M1 M0 M1 M0 M1 M0 M1 M0 M1 

No noise 0.51 0.40 0.04 0.29 0.03 0.05 0.05 0.15 0.37 0.11 

Noise in M0 0.31 0.43 0.08 0.36 0.02 0.05 0.11 0.10 0.48 0.07 

Noise in M1 0.50 0.46 0.02 0.27 0.02 0.05 0.06 0.09 0.41 0.13 

 

We propose the GWN which fuses data from multiple modalities with different sampling 

rates and/or dimensionalities. We showed that the GWN not only outperforms simple 

concatenation of these data for pain classification based on positional and muscle activity 

data but its good performance persists even in the presence of noise of an unknown 

timescale in either of the two modalities. While the modalities used in our empirical study 

had been (re)sampled to the same sampling rate, the timelines and timescales of events 

in the two modalities could still be different. 

 

Study 4: Accounting for Timescale Differences in Leveraging Human 
Activity Recognition (HAR) to enable Protective Behaviour Detection (PBD) 
with An Hierarchical HAR-PBD Model 
 

The Hierarchical HAR-PBD model addresses the importance of understanding the activity 

being performed in a movement to determine whether or not protective behaviour is 

expressed in the movement while accounting for differences between the temporal 

structures of the activity being performed and expressions of protective behaviour. The 

HAR and PBD modules of the model are based on graphical convolution (Kipf and Welling 

2017) and long short-term memory Hochreiter and Schmidhuber 1997; Gers et al. 1999) 

layers which we together refer to as GC-LSTMNN (see deliverable D3.7). In-depth 
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description of the Hierarchical HAR-PBD model can be found in the peer-reviewed 

publication of the study. 

 

The Hierarchical HAR-PBD model was evaluated using the 3D full-body joints positions 

from the EmoPain dataset with the corresponding continuous-time annotations of 

protective behaviour as well as continuous-time annotations of the activity being 

performed. As with Study 1, the data used was prepared by window segmentation and 

the protective behaviour label of each segment was defined as 1 when at least two of the 

four clinician raters rated at least 50% of the segment as positive for any of 5 specific 

protective behaviour categories (guarding, stiffness, hesitation, the use of support, and 

jerky motion) and 0 otherwise. The activity label of the window is based on majority vote, 

with six activity types in total in the data used. Further, we performed data augmentation 

techniques of jittering (i.e. Gaussian noise with standard deviations of 0.05 and 0.1 

respectively) and cropping (i.e. drop out of timesteps and joints with selection probabilities 

of 0.05 and 0.1 separately) (Um et al. 2017) on these data to increase the size of the 

training data. 

The GC-LSTMNN architecture for the HAR module was implemented as a graphical 

convolution network with 26 convolutional kernels, 3 LSTM (layers each with 24 hidden 

units, and a single fully-connected layer. A similar configuration was used for the PBD 

module except that 16 kernels were used in its own graphical convolution kernels. The 

HAR is first pre-trained and its weights frozen before being integrated in the PBD module. 

This strategy was used to account for possibly different temporal and/or spatial structures 

for HAR and PBD tasks. 

To address imbalance of labels in the dataset, a novel loss function, the class-balanced 

focal categorical cross-entropy (Wang et al. 2021) was used. The Adam optimiser 

(Kingma and Ba 2014) was used for training, with learning rate of 5e-4 and 1e-3 for the 

HAR and PBD modules respectively. The Hierarchical HAR-PBD model was evaluated 

based on leave-one-subject-out cross-validation. 

 

https://arxiv.org/ftp/arxiv/papers/2011/2011.01776.pdf
https://arxiv.org/ftp/arxiv/papers/2011/2011.01776.pdf
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Table 1 shows the protective behaviour detection results of the experiments based on the 

Hierarchical HAR-PBD model. The performance for human activity recognition (not 

included in the table) was 0.88 accuracy (0.81 macro F1 score). The results show that 

the architecture outperforms the previous state of the art, i.e. our BANet using either 

angles and angular energies computed from the EmoPain dataset (Original BANet) 

(Wang et al. 2019) or the raw three-dimensional joints positions (Compatible BANet) in 

the dataset. We further see the value of including the HAR module in the architecture in 

the decrease in performance when the HAR module is discarded (PBD only).  

In addition, we find that it was critical to pretrain this module and freeze the weights in 

integration for protective behaviour detection. The results indeed suggest that activity 

recognition only brings value to protective behaviour detection if different temporal and/or 

spatial representations are accounted for in the two movement abstraction levels (activity 

and protective behaviour). 

 

Table 13: Results of Protective Behaviour Detection with the Hierarchical HAR-PBD Model 

 

Method Accuracy 

Macro 

F1 Score 

Hierarchical HAR-PBD 0.88 0.81 

Retrained-HAR Hierarchical HAR-PBD (i.e. pre-trained HAR weights 

not frozen) 

0.76 0.55 

Unpretrained-HAR Hierarchical HAR-PBD (i.e. HAR not pre-trained) 0.71 0.45 

PBD only (i.e. without HAR) 0.83 0.71 

Original BANet (Study 1) 0.78 0.56 

Compatible BANet (Study 1) 0.79 0.63 
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2.1.1 Cortico-motor alpha coherence influence visual 
perception  
  

For a full description please see: Tomassini A., Maris E., Hilt P.M. Fadiga L., D’Ausilio 

A. (2020) Visual detection is locked to the internal dynamics of cortico-motor control. 

PLoS Biol, 18(10):e3000898. 

  

Movements overtly sample sensory information, making sensory analysis an active-

sensing process (Scott et a,. 2015; Engel et al., 2001; Palva and Palva, 2018; Tomassini 

et al., 2017). In this study, we show that visual information sampling is not just locked to 

the (overt) movement dynamics, but to the internal (covert) dynamics of cortico-motor 

control. We asked human participants to perform an isometric motor task – based on 

proprioceptive feedback – while detecting unrelated near-threshold visual stimuli. The 

motor output (Force) shows zero-lag coherence with brain activity (recorded via 

electroencephalography) in the beta-band, as previously reported. In contrast, cortical 

rhythms in the alpha-band systematically forerun the motor output by 200ms. Importantly, 

visual detection is facilitated when cortico-motor alpha (not beta) synchronization is 

enhanced immediately before stimulus onset, namely at the optimal phase relationship 

for sensorimotor communication. These findings demonstrate an ongoing coupling 

between visual sampling and motor control, suggesting the operation of an internal and 

alpha-cycling visuomotor loop. 
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Fig 1. Experimental set-up, procedure and 

behavioral results. (A) EEG, EMG and Force 

were recorded while participants performed two 

tasks concurrently: visual detection and right wrist 

abduction to push an isometric joystick’s handle 

towards one’s own body. (B) Visual feedback of 

the force (four horizontal bars elongating towards 

the center of the screen) was provided until 

participants reached the target force level. 

Afterwards, participants were required to fixate 

and maintain stable contraction for 5.5 s without 

visual feedback. During continuous contraction, a near-threshold visual dot could appear 7.5º to the right 

of fixation and at a random time between 1.6 and 4.6 s (no stimulus was presented in 15% of trials). Trial 

end was signaled by a question mark prompting participants to release the contraction and report verbally 

whether they had seen or not seen the visual stimulus. (C) Force time courses in the pre- (left) and post- 

(right) stimulus period for hits- and misses-trials. Shaded areas represent ± 1 standard error of the mean 

(SEM). The black horizontal line indicates the time interval (0.55-0.85 s) belonging to the cluster that 

survived cluster-based permutation statistics for the hits-misses contrast. (D) Motor performance in the -

1.6-0-s-window before stimulus presentation quantified as absolute (error) and relative (deviation) 

percentage difference from target force, inter-trial and within-trial force variability, slope and slope variability. 

Error bars represent ± 1 SEM. 

  

 Fig 2. Schematic representation of the main analyses. All panels show the entire available epoch [time-

locked to stimulus onset: from -1.6 to 0.9 s] for example force and EEG signals. Different panels illustrate 

how the windowing and time-shifting (if applicable) of the signals has been performed for the main analyses. 

(A) Coherence and Granger causality are computed between force (black) and EEG (violet) data windows 

encompassing the entire pre-stimulus epoch [i.e., from -1.6 to 0 s]. (B) Lagged coherence is computed 

between a fixed 0.6-s force window (black) centered at -0.8 s [extending from -1.1 to -0.5 s] and 0.6-s EEG 

data windows that are either time-aligned with the force (violet; lag: 0 s) or shifted in time by up to 0.5 s (in 

10-ms steps) in the backward (pink; lag: -0.5 s) and forward (dark violet; lag: +0.5 s) direction. (C) Time-

resolved lagged coherence is computed between 0.3-s force windows that are advanced over time (in 10-

ms steps) from -1 s (black) up to a variable time point depending on the analysis (gray; example time is 0 

s for illustrative purposes) and corresponding 0.3-s EEG data windows that are either time-aligned with the 
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force (violet; lag: 0 s) or shifted in time by up to 0.4 s (in 10-

ms steps) in the backward (pink; example lag is -0.2 s for 

illustrative purposes) and 0.2 s in the forward (dark violet; lag: 

+0.2 s) direction. 

 

 

 

 

 

 Fig 3. Spectral content of pre-stimulus force and 

coherence with cortical activity. (A) Force power (left) and 

coherence (middle) spectrum with contralateral centro-

parietal EEG electrodes (C1, C3, C5, CP5; marked in grey in 

the topographic maps) computed on the pre-stimulus 

window (-1.6-0 s). Topographies show coherence in the 

alpha (9-11 Hz; top) and beta (20-30 Hz; bottom) range. 

Coherence has been spatially z-scored before averaging 

across subjects and frequencies by subtracting the individual 

mean coherence over the electrodes and dividing the result 

by the standard deviation across the electrodes. (B) Same 

as in (A) but computed separately for hits- and misses-trials (left, middle). The black horizontal line indicates 

the frequency interval (8.5-11.5 Hz) belonging to the cluster that survived cluster-based permutation 

statistics for the hits-misses contrast. Coherence spectra are averaged over the EEG electrodes belonging 

to the same cluster (evaluated at 10.5 Hz; see black asterisks in the topographic map). Topography shows 

the hits-misses difference in coherence averaged over the cluster frequency interval (8.5-11.5 Hz). 

 

 Fig 4. Lag-dependency of cortico-

force coherence. (A) Lag- and 

frequency-resolved cortico-force 

coherence is shown for two EEG 

electrodes, C1 (left) and CP5 (right), 

where beta- and alpha-band coherence 

is maximal, respectively. Coherence has 

been calculated on 0.6-s data windows 

(from -1.1 to -0.5 s) by shifting the EEG signal (relative to the force signal) by a variable amount of time 

(negative lags: EEG precedes force; positive lags: EEG follows force)  (B) Cross-correlation between force 
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and EEG activity [over the same electrodes as in (A)] that was previously band-pass filtered (zero-phase 

filtering by two-pass Butterworth, 2nd order) in the beta (20-30 Hz; left) and alpha (8-12 Hz; right) range. 

Cross-correlations are normalized so that the autocorrelations at zero lag are identically 1. (C) Lag-

frequency coherence representation as in (A) but computed on shorter (0.3-s) sliding data windows and 

then averaged over the pre-stimulus period for all trials as well as separately for hits- and misses-trials. (D) 

Lag (left) and spectral (right) tuning of cortico-force coherence expressed as the relative percentage change 

in coherence averaged over frequencies between 8 and 12 Hz and lags between -0.36 and 0 s (i.e., lag of 

max. alpha coherence on all trials [-0.18 s] ±1SD across subjects), respectively. (E) Topographies show 

coherence at frequency 10.5 Hz and lag -0.2 s for all trials (top), hits (middle) and misses (bottom). 

  

Fig 5. Cortical alpha drives alpha fluctuations in the force: Granger 

causality. (A) Granger causality in the EEG-to-force and force-to-EEG 

directions (evaluated at electrode CP5) computed on the entire pre-

stimulus interval (-1.6 – 0 s) for all trials (top), hits (middle) and misses 

(bottom). Topographies show Granger causality in both directions (top: 

EEG-to-force; bottom: force-to-EEG). (B) Topographies show the hits-

misses difference in Granger causality (left: EEG-to-force; right: force-

to-EEG) evaluated at frequency 10.5 Hz (black asterisks mark 

electrodes belonging to the cluster that survived cluster-based 

permutation statistics). 

  

 

 

 

 

 Fig 6. Cortico-force alpha 

coherence just before 

stimulus onset predicts 

perception. Lag- and time-

resolved cortico-force alpha 

(10.5 Hz) coherence over 

the pre-stimulus period for 

hits, misses and their 

difference (hits-misses). The highlighted area indicates the time and lag intervals belonging to the cluster 

that survived cluster-based permutation statistics for the hits-misses contrast. Alpha coherence is averaged 

over the EEG electrodes belonging to the same cluster (evaluated at time 0 s and lag -0.2 s; see black 
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asterisks in the topographic map). The topography shows the hits-misses difference in alpha coherence 

averaged over the time and lag intervals belonging to the same cluster. The bar plot shows alpha coherence 

for the electrode CP5, calculated at lag -0.2 s and time -0.16 s, i.e., the time point closest to stimulus onset 

where the analyzed data windows do not include any post-stimulus data point. Error bars indicate ± 1 SEM. 

***p<0.001. 

 

 

 Fig 7. Time-resolved Granger causality: EEG-to-force alpha 

connectivity just before stimulus onset predicts perception. 

Granger causality in the EEG-to-force (top) and force-to-EEG (bottom) 

directions evaluated at frequency 10.5 Hz and electrode CP5 (marked 

in gray in the topographic maps) is shown for hits and misses as a 

function of time before stimulus onset (i.e., for three non-overlapping 

pre-stimulus 0.5-s time windows centered at -1.25, -0.75 and -0.25 s). 

Topographies show the hits-misses difference in Granger causality at 

corresponding times (see above; the black asterisk indicates that 

electrode CP5 survived permutation statistics for the hits-misses 

contrast; p = 0.0158). 
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2.1.17 Intersecting action and perception in autism 
spectrum disorders at the single-trial level 
  
Noemi Montobbio, Andrea Cavallo, Dalila Albergo, Caterina Ansuini, Francesca Battaglia, 

Jessica Podda, Lino Nobili, Stefano Panzeri, Cristina Becchio (in preparation).  

  

Individuals with autism spectrum disorders (ASD) struggle to attribute intention to action. 

However, the computational and neurobiological bases of these difficulties remain poorly 

understood. In this section, we report on the results of a study combining motion tracking, 

psychophysics, and computational analyses to uncover intention readout computations 

in typically developing (TD) children and children with ASD watching actions produced by 

typical and autistic children.  

Eight- to thirteen-year-old TD children (N = 35) and children with ASD (N = 35) watched 

a hand reaching for a bottle and judged on the intention of the observed grasp. To capture 

natural movement variability, we selected 100 representative reach-to-grasp actions (50 

ASD actions and 50 TD actions) from a large action dataset obtained by filming and 

simultaneously tracking TD and ASD children reaching toward and grasping a bottle with 

the intent to place or pour. In a within-subjects counterbalanced order, participants 

watched videos of actions performed by TD children and ASD children (Figure 1A-C).  

 We developed a novel framework to quantify how intention encoding (how intention 

information is encoded in movement kinematics) and readout (how intention information 

is readout from visual kinematics) intersect at the single-trial level in typical and autistic 

observers (Panzeri et al., 2017; Patri et al., 2020). We first quantified intention information 

in TD and ASD single-movement kinematics and determined the set of kinematic features 

that encode such information. We then developed a readout model to quantify how (and 

how well) typical and autistic observers read intention information in typical and autistic 

visual kinematics. We finally examined how encoding and readout intersect at the single-

trial level. This approach allowed us to move beyond representations averaged over trials 

and participants and determine how individual observers read out intention information at 

a single-trial level to inform intention choices.   
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Figure 1. Experimental design and intention discrimination results. (A) Example video frames of 

grasp-to-pour and grasp-to-place acts produced by TD and ASD children. Each video started at reach onset 

and ended at the contact time between the hand and the bottle. (B) Trial design of the intention 

discrimination task. (C) Schematic of the experimental design. (D) Trial-averaged intention discrimination 

performance (fraction correct) for each observer group and observed action.  (E) Scatter plot of individual 

intention discrimination performance on TD actions against ASD actions. For each observer group, 

regression lines estimated via piecewise regression analysis and 95% confidence intervals of the breaking 

point are displayed.  

  

Trial-averaged intention discrimination was above in TD children, but not in ASD children 

(Figure 1D). However, single-trial analysis revealed that both TD and ASD intention 

choices reflected systematically trial-to-trial variations in visual kinematics (Figure 2).  
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Figure 2. Readout of intention from single-trial kinematics. (A) Block-diagram and equation of the 

model used to quantify intention readout. (B) Cross-validated performance of the readout models quantified 

as fraction of correctly predicted intention choices. Light sub-bars represent the chance level performance 

quantified as the mean of the null-hypothesis distribution of cross-validated model performance. (C) Scatter 

plots of the relationship between the observed intention discrimination performance and the one predicted 

by the readout model across individual participants, for TD and ASD observers separately. Pearson’s 

correlation coefficients and their significance values are reported. (D) Scatter plots of the relationship 

between trial-level reaction times and model prediction confidence, computed as the deviation of the 

estimated probability of ‘to pour’ from chance. Spearman’s correlation coefficients and their significance 

values are reported. 

 

Thus, both TD and ASD observers read single-trial variations in movement kinematics, 

but in different ways. TD readers were better able to identify intention-informative features 

during observation of TD actions; conversely, ASD readers were better able to identify 

intention-informative features during observation of ASD actions, suggesting a kinematic 

similarity advantage. Crucially, while TD observers were generally able to correctly 

interpret the extracted intention information, those with autism were unable to do so, 

regardless of whether the information was extracted from TD or ASD visual kinematics.  
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These results expand existing conceptions of intention reading in autism by suggesting 

that difficulties in attributing intention to action in autism are specifically the result of a 

deficit in linking informative kinematics to intention. 
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