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Introduction 
 
This deliverable reports on the progress on the research conducted between M7-M18 of 

the EnTimeMent project with regards to the individual action execution and observation 

axis, focused on studies on individual motor behaviour. This part of the project constitute 

the baseline for research and theoretical work developed in the Phase I of the 

EnTimeMent project, focused on dyadic studies (n=2) and on group motor behaviour 

(involving three people or more, n>2) which are reported in D2.3 and D2.5 respectively. 

The numbering of the studies reported herein, refers to the most recent version of 

deliverable D1.2 Research Requirements providing an update on the methodological 

background and know-how of the studies. In this deliverable we report results of studies 

that have finished the stage of data collection and analysis (2.1.2, 2.1.6, 2.1.8, 2.1.11, 

2.1.15). 

 

A major theoretical shift in cognitive neuroscience was driven by a new conceptualization 

of the motor system. In fact, motor processes seem to play a role in perceptual and 

cognitive functions, challenging the classical sensory versus motor separation and 

opening the doors to embodied cognition research in both humans and artificial systems. 

Critically, the recruitment of motor programs, during action/object perception, constrain 

the active search of specific sensory features that maximize the discrimination between 

different perceptual hypotheses and support prediction of future information at multiple 

timescales. The generation of active inferences about future actions of conspecifics is 

central to our capability to smoothly interact with each other and, therefore, fundamental 

to the development of human cognition. 

 

In this deliverable we collected all ongoing research, investigating action-perception 

coupling in single individuals and thus on the neurobehavioral building blocks allowing 

sensorimotor communication in dyads or groups. Studies presented below are those that 

have either published or are in an advanced stage close to submission for publication. 

The first two studies are based on the same theoretical framework suggesting that 

Individual Motor Signatures (IMS) characterize action execution. Briefly, IMSs are 

relatively stable movement strategies that each one of us unknowingly display when 

moving in our environment. Interestingly, data from the first experiment (2.1.2) provide 

evidence that motor activations during action observation are driven by the mismatch 

between the observers’ and actors’ IMSs. The larger the distance the larger is the motor 

recruitment, thus suggesting that the motor system might indeed act as an inferential 

engine that compares other’s action to our own template. The second study (2.1.6) 

approaches a similar problem from a different perspective. In fact, the goal of this project 
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is to automatically extract IMSs from arm movement by using both traditional machine 

learning methods and more recent deep learning strategies. 

 

The third (2.1.8) and fourth projects (2.1.11) explored the sensorimotor bases of 

expressivity. Among them the first aimed at extracting expressivity measures from 

complex individual body motion. In order to do so, a novel computational pipeline has 

been implemented by integrating graph and game theory towards the analysis of the 

perceived origin of full-body human movement and its propagation. In fact, the analysis 

of the origin of movement is an important component in the understanding and modeling 

expressivity. The data, extracted with the computational method, have then been 

submitted for evaluation to a panel of dancers with varying degrees of expertise. The 

following study has instead tried to discover which specific postural and kinematic 

features could be computed from affective whole-body movement videos and related 

those to brain responses. By means of state-of-the-art neuroimaging methods it was 

investigated whether the (dis)similarity of body posture and kinematics between different 

emotional categories could explain neural responses to body expressions in and beyond 

body-selective regions. 

 

Finally, the last section reports on the 2.1.14 research activities aimed at the automatic 

detection of pain and associated behavior from body movements. This research program 

is a key component of WP4, constituting one of the use case scenarios planned in 

EnTimeMent. Taken together, Phase I results reported herein pushed forward current 

state-of-the-art description of human movement from the perspective of individual 

differences (IMS) and their expressive properties. Studies reported below addressed 

multiple gaps in the body of research and emphasized the importance of approaching 

human movement analysis and modeling through the lens of mid-layer features. 

Research roadmap for Phase II of the EnTimeMent project has been established (D1.2 

Research requirements), which will push further the frontiers towards a full understanding 

of the importance of modeling human movement across multiple timescales. 

2.1.2 Action variability in action observation and 
execution 
 
For a full description please see: Hilt P. M., Cardellicchio P., Dolfini E., Pozzo T., 
Fadiga L., D’Ausilio A. (2020) Motor recruitment during action observation: effect of 
interindividual differences in action strategy. Cereb Cortex, 30(7), 3910–3920. 
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Action Perception 
Mirror neurons were originally described as visuomotor neurons that are engaged both 
during visual presentation of actions performed by conspecifics, and during the actual 
execution of these actions (Rizzolatti and Craighero 2004). These neurons were first 
discovered using single-cell recordings in monkey premotor cortex (area F5; di Pellegrino 
et al. 1992) and later within monkey inferior parietal cortex (PF/PFG; Gallese et al. 2002; 
Fogassi et al. 2005). 
 
Since then, there has been a growing interest in mirror neurons both in the scientific 
literature and the popular media. The widespread interest was in particular driven by their 
potential role in imitation and thus in a fundamental aspect of social cognition (Iacoboni 
2005; Rizzolatti and Sinigaglia 2010). In follow-up studies, neurons with mirror properties 
have been found in different parietal and frontal areas of monkeys and other species, 
including humans (Rizzolatti and Sinigaglia 2016). 
 
The mirror neuron system has also been associated with action perception. In fact, others’ 
action anticipation and comprehension might be achieved both by the ventral route 
(Middle Temporal Gyrus – MTG - and the anterior Inferior Frontal Gyrus - aIFG), and the 
dorsal route (Inferior Parietal Lobule – IPL - and the posterior Inferior Frontal Gyrus - 
pIFG). The dorsal stream may support this process by reactivating the most likely action 
needed to achieve the predicted goal. In line with this account, action discrimination could 
rely on internal forward models (Flanagan and Johansson 2003; Kilner et al. 2004) to 
anticipate the unfolding of a given action (Schütz-Bosbach and Prinz 2007). 
 

Mirror neuron system in humans 
Immediately following the initial reports of mirror neurons in the macaque brain, the 
existence of an analogous mechanism in humans was discussed. While some authors 
argued that clear evidence of a human mirror neuron system was still lacking (e.g. 
Dinstein 2008; Lingnau et al. 2009; Turella et al. 2009), further and numerous results 
coming from various techniques such as transcranial magnetic stimulation (TMS; Fadiga 
et al. 2005; Naish et al. 2014), electroencephalography (EEG; Fox et al. 2016), functional 
magnetic resonance imaging (fMRI; Hardwick et al. 2018) and human single-cell 
recordings (Mukamel et al. 2010) revealed the existence of a fronto-parietal network with 
mirror-like properties in humans (Rizzolatti and Sinigaglia 2010).  
 
Based on human brain-imaging data (Rizzolatti et al. 1996; Decety et al. 1997; Iacoboni 
et al. 1999) and cytoarchitecture (Petrides 2005), the ventral premotor cortex and the pars 
opercularis of the posterior inferior frontal gyrus (Brodmann area 44) were assumed to be 
the human homologues of macaque mirror area F5. Later, the rostral inferior parietal 
lobule was identified as equivalent to the monkey mirror area PF/PFG (Rizzolatti et al. 
2001; Rizzolatti and Craighero 2004). 
 
In parallel, EEG research showed that event-related synchronization and 
desynchronization of the mu rhythm (rolandic alpha band) were linked to action 
performance, observation and imagery (Pineda 2008; Fox et al. 2016). These results 
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suggest that Rolandic mu event-related desynchronization (Cochin et al. 1998; Babiloni 
et al. 2002) during action observation reflects activity of a mirror-like system present in 
humans (Sebastiani et al. 2014; Fox et al. 2016; Lapenta et al. 2018). 
 
Finally, single-pulse TMS over the primary motor cortex (M1) and motor evoked potentials 
(MEPs) amplitude were employed as a direct index of corticospinal recruitment 
(Corticospinal Excitability - CSE). Using this technique, several studies showed a 
modulation of MEPs amplitude during action observation matching various changes 
occurring during action execution (Fadiga et al. 1995; for a review please see: Fadiga et 
al. 2005; Naish et al. 2014; D’Ausilio et al. 2015).  
 
The coordination of our own actions with those of others requires the ability to read and 
anticipate what and how our partner is about to do. Indeed, when observing someone 
else moving, we can extract useful information such as future bodily displacements 
(Flanagan and Johansson 2003; Blakemore and Frith 2005; Falck-Ytter et al. 2006) or 
infer higher-order cognitive processes hiding behind those actions (Becchio et al. 2008; 
Soriano et al. 2018). In principle, knowledge about the invariant properties of movement 
control (Flash and Hogans 1985; Bennequin et al. 2009) could support inferences about 
the unfolding of other’s actions (Dayan et al. 2007; Casile et al. 2010). In this regard, it 
has been proposed that these inferences may be based on a direct match between actor’s 
sensorimotor activations during Action Execution (AE) and observer’s sensorimotor 
activations triggered by Action Observation (AO; Rizzolatti et al. 2001; Rizzolatti and 
Craighero 2004; Rizzolatti and Sinigaglia 2016). Indeed, using Corticospinal Excitability 
(CSE), motor recruitment during AO was shown to replicate the spatio-temporal sequence 
of motor commands implemented by the actor (for a review please see: Naish et al. 2014). 
 
This idea is however challenged by the redundancy that characterizes the organization 
of human movement (Kilner 2012; D’Ausilio et al. 2015; Hilt et al. 2017). The abundance 
of degrees of freedom available during AE suggests that different joint configurations, as 
well as spatio-temporal patterns of muscle activity, can equally be used to reach the same 
behavioral goal (Bernstein 1967). In this regard, a strong version of the direct-matching 
hypothesis (Rizzolatti et al. 2001; Rizzolatti and Craighero 2004; Rizzolatti and Sinigaglia 
2016) explains inferences when a direct relationship exists between muscle recruitment, 
movement kinematics and behavioral goals (e.g. simple finger movements). However, it 
is less clear how other’s complex movements (i.e. multi-joint movements) are transformed 
onto the observer’s motor representations. In this case, any sensorimotor-based 
inference about other’s actions amounts to finding a solution to a many-to-many mapping 
problem.  
 
Here we suggest that a simpler mapping exists between behavioral goals and the lower 
dimensionality space of whole-body configurations (i.e. synergies; Hilt et al. 2017). In fact, 
although a handful of kinematic solutions are biomechanically valid, everyday actions (i.e. 
reaching for an object on the floor starting from a standing posture) are usually performed 
via a limited number of possible kinematic configurations of the biomechanical chain (e.g. 
“ankle” and “hip” strategies for postural control; Horak and Nashner 1986; Berret et al. 
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2009). On the top of that, each individual carries his own robust and yet unique way of 
moving (Individual Motor Signature – IMS; Hilt et al. 2016; Słowiński et al. 2016). For 
instance, in a whole-body reaching task Hilt and collaborators (Hilt et al. 2016) showed 
low intra-subject motor variability, accompanied by a large inter-subject variability. The 
inherent lower dimensionality of whole-body postural control and the presence of robust 
Individual Motor Strategies (IMS) suggest the existence of a simpler AO-AE mapping that 
may be a function of everyone’s individual movement style. Backed by this, we 
hypothesize that while observing others’ multi-joint actions, people build sensorimotor-
based predictions by referencing what they see to the motor engrams of their own IMS. 
To verify our hypothesis, we asked naive participants to first perform and then observe a 
whole-body reaching action which could be executed with numerous IMSs generally 
spread within a continuum between two “extreme” patterns (ankle and knee strategies; 
Hilt et al. 2016). After characterizing subjects’ own IMS during execution, we measured 
their sensorimotor recruitment (CSE) by administering single-pulse Transcranial 
Magnetic Stimulation (TMS) on their motor cortex while they observed an actor achieving 
the same goal by using the two “extreme” patterns of IMSs. CSE was measured from the 
cortical representation of the Tibialis Anterior muscle (TA) that shows a clearly dissociable 
pattern while executing the two IMSs. To exclude potential carry-over effects between 
action execution and observation, the same subjects were also tested several months 
later in the action observation task only. 
 
 

 
   
Figure 1: Illustration of the main results. MEPs amplitudes are depicted when observing knee (blue stick 
figure) or ankle (red stick figure) stimulus, for a subject that performed the knee (A) or the ankle (B) IMS in 
AE. Our results showed that corticospinal excitability was greater when actor and observer IMSs differ the 
most. These results agree with the predictive coding hypothesis that hypothesize the existence of a distance 
computation between observed movement and observer’s IMS.  

 
CSE was modulated at the single subject level according to the “distance” between actors’ 
and observer’s IMS: larger CSE modulations are associated with the observation of a 
more different IMS. This result is schematically illustrated in Figure 1 for two hypothetical 
subjects having extreme IMSs. Importantly, motor priming effects elicited by the action 
execution task can be excluded considering that the same pattern of results, in the same 
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subjects, was shown several months later and in the absence of any action execution 
task.  
 
Our results are at odds with a strictly simulative account of others' actions. Instead, the 
fact that sensorimotor activities during AO are shaped around a measure of distance 
between observed and own IMSs, agrees with the predictive coding framework. In this 
model, prior motor knowledge provides critical top-down signals that are integrated with 
bottom-up sensory-based processing (Friston 2010; Friston et al. 2011). To do so, a 
comparison between predicted (own IMS) and observed kinematic information (others’ 
IMS) generates a prediction error signal that is used to update the representation of 
other’s action. 
 
Overall our data suggest that a greater uncertainty about other’s action will call for a 
greater need of trustful predictions and consequently greater sensorimotor recruitment. 
In this context, the present study adds direct neurophysiological evidence that prediction 
errors are estimated by accessing IMS-related information. In fact, the many-to-many 
mapping problem in other’s (multi-joint) action discrimination might be solved by 
accessing knowledge about IMSs. Indeed, the stability of IMSs (Słowiński et al. 2016; 
Coste et al. 2017) may reflect the implicit control and prioritization of a limited number of 
internal parameters during action planning and execution, partly solving the motor 
redundancy problem.  
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2.1.6 Investigate singularity in ellipses drawing 
The goal of the experiment is to investigate the singularity which characterizes different 
people. This high-level feature enables to distinguish different people by analyzing the 
way they move, write, or perceive an event (for example, auditory or visual). The way 
these actions are carried out is different from individual to individual and, for this reason, 
we speak about singularity. The proposed experiment led to measure and investigate this 
high-level feature. The possibility to measure singularity can contribute to many 
application fields, from clinical to entertainment and customer applications. The first 
experiment consists in the analysis of how different people draw an ellipse. The 
experiment is grounded on the Two-Third Power Law: V(t) = k * rbeta  where v(t) is velocity, 
k is a constant and r is the ellipse radius of curvature. If beta were different from each 
person it could be sufficient for a classification of singularity.  
The hypothesis is that beta is not enough to provide a measure of singularity, and 
therefore we need to individuate and measure other features and apply data analysis and 
machine learning techniques to obtain a correct measure of singularity. 
The first scenario analyzed focuses on motor signature: people try several times the 
drawing of the same ellipse. The final outcomes will be 10 different ellipses for trial. Each 
participant carries out 6x10 trials. Each trial consist of 10 execution of an ellipse at the 
same condition. Each participant executes the 10 trials in 6 (2x3) different conditions: 2 
hands (right or left) and 3 drawing speeds (slow, normal, quick). For each trial only 7 
executions of the ellipse are considered (the first 2 and the last one are discarded). 
Summarizing the dataset is made up of 10(trials) x 2(hands) x 3(speeds) x 7(ellipses) x 
14 (subjects) = 5880 available ellipses. For each ellipse, raw data are: 
 

x y Velocity Curvature Pressure Timestamp 

  
As mentioned before, the goal of the experiment is classify different people and identify 
features able to lead the correct classification. In this experiment, we followed two 
different approach until now: 
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1.  Traditional machine learning model (study complete); 
2.  Deep Learning models (currently under study); 
 

Traditional machine learning model 
As we know, traditional machine learning models can provide very stable and robust 
results. In their implementation, they can benefit from steps in a standard Machine 
Learning (ML) pipeline. A common step is the feature engineering step where statistical 
features are computed starting from raw data. This process can significantly improve the 
final prediction of the algorithm used. To perform correctly this step, we need to fix the 
length of time to analyze. Usually, fixed-sliding windows are selected for this purpose. In 
this experiment, we cannot select the fixed-sliding window duration because each person 
draws an ellipse with different timing. Since fixed-sliding windows are not feasible to this 
experiment, we computed statistical measures on different sections of an ellipse drawn 
taking into account only raw data. The split considered in the analysis are the following: 
·    Split = 2: first and second half of the ellipse are considered separately (Figure 1 -

top left) 
·    Split = 2: curves and straight lines are considered separately (Figure 1 – top right); 
·    Split = 4: each curve and each straight line is considered separately from others 

(Figure 1 – bottom left); 
·    Split = 6: each curve is considered separately, and each straight line is divided in 
two parts (Figure 2 – bottom right). 

  
   

Figure 2: Different sections of the ellipse considered in the analysis. From left to right, split in 2 sections, 
split in 4 sections and split in 6 sections. 

Higher-level features, able to better understand the underlying problem, are obtained 
considering different splits using statistical measures. 
A powerful algorithm, both in terms of theoretical properties and practical effectiveness 
(Fernández-Delgado et al 2014, Wainberg et al. 2016), for classification is Random Forest 
(RF) developed in (Breiman et al., 2001) for the first time. RF is composed of the union 
of multiple Decision Trees (Rokach et al. 2008). Compared to DTs, RF introduces an 
additional degree of randomness due to the introduction of a bootstrap phase. 
From the hierarchy presented in the dataset, we focused our analysis identifying two 
different scenarios able to determine the behavior of the model trained. These 2 
scenarios, providing different sensibilities on data used in training set, can be used to 
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understand and estimate the algorithm behavior on unseen or new data. The 2 scenarios 
identified are: 

● Leave-One-Hand-Out (LOHO): the learning set of our classifier is made up of all 
people of the dataset except the information coming from one hand of the tested 
person. This scenario is interesting because one hand is the dominant one and 
can be very relevant in the final classification. 

● Leave-One-Speed-Out (LOSO): the learning set of our classifier is made up of all 
people, all hands and all speeds in the dataset, except one speed coming from the 
tested person. In this case, the learning set contains more information respect to 
the previous scenario and this will be reflected in higher recognition results. 
 

Finally, a Feature Ranking (FR) step is computed in order to discover the most relevant 
section of an ellipse. Once a model is built, it is often required to understand how this 
model exploits, combine, and extract information in order to understand if the learning 
process has also cognitive meaning, namely it is able to capture the underline 
phenomena and does not just capture spurious correlation (Calude et al., 2017; Guyon 
et al., 2003)  by comparing the knowledge of the experts with the information learned by 
the models. FR therefore represents a fundamental phase of model checking and 
verification, since it should generate results consistent with the available knowledge of 
the phenomena under exam provided by the experts. 
FR methods based on RF are one of the most effective FR techniques as shown in many 
researches (Genuer et al., 2010; Saeys et al., 2008). Several measures and approaches 
are available for FR in RF. One method is based on the Permutation Test combined with 
the Mean Decrease in Accuracy (MDA) metric, where the importance of each feature is 
estimated by removing the association between the feature and outcome of the model. 
For this purpose, the values of the features are randomly permuted (Good et al.; 2013) 
and the resulting increase in error is measured. In this way also the influence of the 
correlated features is also removed. Note that, in our case, as a feature we do not intend 
a particular engineered feature but a particular ellipse section (e.g.the first section when 
split= 6, the second curve sections when split=4, etc.). 
 

Deep Learning models 
A parallel approach is related to the use of Deep Learning (DL) models. As we know, 
these architectures are automatically able to extract the best set of features from raw 
data. This implies that the feature engineering step and therefore, the sections split, are 
not needed. 
In our analysis we focused attention on a common backbone for all models we will use. 
This backbone consists of a Convolutional AutoEncoder (CAE) (Masci et al., 2011) able 
to extract the best set of features. Furthermore, it allows a fair comparison between all 
models belonging to the state-of-the-art in ML. The usage of the CAE is strictly related to 
the time-scales of each raw feature. Indeed, in order to better understand multi time-
scales we can follow different approaches in DL. Architectures such as Clockwork-RNN 
(Koutnik et al., 2014) or Multi-LSTM (Liu et al., 2015) are designed to automatically detect 
multi-time scales information. Other models such as LSTM (Hochreiter et al., 1997), 
simply RNN, Multi-Layer Perceptron (MLP), are not directly thought to handle this problem 
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but can provide excellent results if properly used. In particular, the most important thing 
is regard to the extracted features and not to their final connection which can be 
performed by several ML models, also traditional ones. The two different approaches 
discussed before are not necessarily exclusive but can be also considered together. In 
our analysis, we trained the convolutional autoencoder in order to better reconstruct the 
input signal coming from raw data. Different kernel size for convolution are used as 
hyperparameters of the network, and the best set of kernel sizes are chosen. When the 
CAE achieves the minimum reconstruction error, the weights and nodes of the encoder 
are frozen. These nodes and their weights are used to extract higher level features from 
raw data and are used as initial backbone for other models able to compute the final 
connection between these features and classes to be predicted. 
We can now, summarize the models we will used taking into account that convolutional 
autoencoder is the common backbone for all: 
·    MLP; 
·    LSTM; 
·    Clockwork – RNN.  
 

Recognition performances in LOHO and LOSO 
The Table 1 reports the average accuracy. The recognition results are quite high (> 65 
%) in LOHO scenario taking into account the 14 people in the dataset. Moreover, we can 
also observe very high scores in the LOSO scenario (> 85%). 
Indeed, it is intuitable that the section with higher scores is the one related to the split of 
the two halves of the same ellipse. This is a consequence of more consecutive information 
in those 2 sections. Although this is the most accurate part, it is also the least interesting 
for a case study. On the contrary, the other splits can be very interesting analyzing if the 
main information lies in curves or straight lines. Subsequently, we would like to identify 
which part of each curve or straight line has more information than its counterpart. 
Observing the Table 1, we can conclude that, except the split in two halves of the same 
ellipse, the best sections are provided from split=4. 
 
Table 1. Average accuracy (%) for different splits considered in the analysis (see Figure 3). 

SPLIT SCENARIO ACCURACY 

2 
(first half vs second half) 

LOHO 70.70 

LOSO 86.49 

 
2 
(curves vs straight lines) 

LOHO 65.19 

LOSO 82.70 

 
4 

LOHO 69.85 

LOSO 85.54 

 LOHO 69.71 
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6 LOSO 85.42 

  

Since DL architectures are currently under study we cannot provide detailed results for 
those models. A first analysis using MLP, achieve excellent result (close to 100% in LOHO 
scenario). This implies that features learned through the CAE can easily describe how 
classify different people. 
A new analysis is also conducted. The idea of this new analysis was observing how 
recognition results change removing from dataset information with more noise. Indeed, 
the not-dominant hand can be very noisy if compared to the other one. Moreover, also 
“slow” speeds can be noisy. A preliminary study analyzing only “clear” information was 
conducted. Reasonably, the LOHO scenario loses meaning in this case study. We can 
observe what happen with a split=6 in the following table: 
Table 2. Average accuracy (%) for split=6 where not noise information is used in analysis.  

SPLIT SCENARIO ACCURACY 

6 LOSO 71.44 

 
Comparing the two different recognition results, we can observe how “noisy” information 
is very relevant in the person classification with an accuracy of about 14% higher. On the 
other hand, the analysis of the dominant hand is very interesting from a neuroscience 
perspective. As mentioned in the Traditional Machine Learning section, we exploited how 
different sections of each ellipse influences the recognition performance. Observing 
rankings in Figure 2, we can easily assert that the main informative section in ellipse 
analysis is in the first curve (where people start drawing). This is visible in all splits. 
Moreover, it is true that the split in 2 halves is not focused in curves or straight lines but, 
also there, the section with higher ranking is the first one (where people start drawing). 
Therefore, with this analysis we can conclude that the beginning of the draw allows us to 
capture more insights of the underline problem. Or, in other words, this is the most 
significant section of all. Next experiment, with DL models, can help us to identify which 
are the best set of features able to lead this classification problem. As we are observing 
for first results, MLP can achieve very high recognition scores. 



 
D2.1  

DISSEMINATION LEVEL: PU 

 

SEPTEMBER 2020 
17 / 44 

 
 

 
Figure 3: Feature Ranking of different splits considered in the analysis. 
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2.1.8 Perception of the origin of full body human 
movement and its propagation 
 
For a full description please see: K. Kolykhalova, G. Gnecco, M. Sanguineti, G. Volpe, 
and A. Camurri, “Automated analysis of the origin of movement: An approach based on 
cooperative games on graphs,” IEEE Transactions on Human-Machine Systems, 2020. 
DOI: 10.1109/THMS.2020.3016085 
 
We developed an approach based on the integration of graph and game theory to 
contribute towards the analysis of the perceived origin of full-body human movement and 
its propagation.The analysis of the origin of movement is an important component in the 
understanding and modeling expressivity.  E.g., in rehabilitation: the detection of the origin 
of movement can help in enabling a patient to learn how to perform a movement (e.g., 
how to stand up from a chair) correctly to avoid injuries. For example, the leaning forward 
of an arm can have very different expressive meanings depending on the origin of 
movement: a “punch” originates from the foot, a “push away” may originate from the 
shoulder, and a “caress,” from the hand. All these movements are basically a leaning 
forward of an arm, the very different dynamics of which are explained also in terms of the 
origin of movement. The approach, which is grounded on the combination of cooperative 
game theory and graph theory, consists of the following steps. 

  
Figure 4: Conceptual architecture of the proposed method 

The human body is represented by means of an undirected graph, in which the vertices 
are the joints and the edges are both physical and non-physical connections between 
these body joints. Moreover, the edges are associated with weights, the values of which 
depend on a feature extracted from motion capture data. On the one hand, physical links 
represent connections between consecutive physical body joints, such as the forearm. 
On the other hand, non-physical links model the dependencies between joints that are 
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not physically connected, solely derived from correlations observed in the chosen 
movement feature between these joints: for example, a hand moving towards the head, 
followed by a movement of the head in response in the same direction, reveals a non-
physical link between the hand and the head. Non-physical links therefore play the role 
of potential bridges joining body parts that are not directly connected within the skeletal 
structure but exhibit correlated dynamics during the movement performed. Starting from 
the graph representing the skeletal structure augmented by non-physical links, we define 
a suitable mathematical game  (Maschler et al., 2013) in which the vertices (i.e., the body 
joints) are the players and the edges model the communication channels (through which 
movement can propagate) between these players. Body movement is therefore 
represented by a game constructed on the graph. A cooperative game model is proposed, 
since both the vertices and the edges contribute to the overall movement. 
Then, the Shapley value (Maschler et al., 2013)  – which is a classical solution concept 
from cooperative game theory able to provide a ranking of the players that represents 
their relevance in the game - is computed for all the players of the game and adopted as 
a measure of vertex relevance in the graph to estimate how much each vertex contributes 
to a shared goal (i.e., to the way in which a specific movement-related feature is 
transferred among the joints). The possibility to know, moment by moment, which joint(s) 
is the most representative in the ongoing full-body movement (i.e., those with the highest 
Shapley value) constitutes precious information for the automated analysis of 
expressiveness in movement. The joints with the highest Shapley value are candidates 
to be the perceived origin of movement propagating in the body and they can provide 
useful cues to detect which parts of the body are most relevant for the analysis of 
expressive movement and worth a detailed observation by means of further analysis 
techniques (possibly at a finer scale), as well as to inform automated techniques of 
movement prediction. 
We used a recorded multimodal data set composed of 127 recordings, acquired with the 
goal of analysing movement, determining the features associated with it, and designing 
computational techniques for their evaluation. The recordings were acquired using a 
Qualisys motion capture system with 13 infra-red cameras synchronized with 2 video 
cameras in the frontal and lateral views. The two professional dancers were equipped 
with 1 microphone, 5 accelerometers, and 64 infra-red reflective markers. After their 
acquisition, the data were cleaned and post-processed via the Qualisys Track Manager 
native software using a cubic polynomial interpolation for trajectories with gaps in the 
data. 
Finally, annotations of the origin, path, and destination of each movement were produced 
by experts. The expressive movements performed were not related to a specific dance 
style, being normal full-body movements, e.g., leaning an arm towards a target or turning 
towards a direction, characterized by a clear origin of movement, enabling the detection 
of the origin even by a non-expert observer (though its automatic detection is still not a 
trivial task). The choice of dancers as movement executors was motivated by their full 
awareness and control of movement details and their higher motor skills with respect to 
non-trained people, which allowed reducing the amount of noise with respect to 
alternative performances by non-experts. 
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Validation of the approach included an on-line survey (based on the data repository) in 
which participants with different levels of expertise in dance took part. A survey website 
was developed to collect user ratings. Once the user agrees to participate and perform 
the task, a series of triplets of videos is presented. 

  
Figure 5: Website for the evaluation of the proposed method: best method selection.  

 
Each of the three videos in a triplet displays a skeletal representation of a dancer 
performing the same full-body expressive movement. Each video has one highlighted 
joint (in red). This joint corresponds to the most relevant joint according to one of the 
following criteria: (i) joint with the maximum Shapley value; (ii) joint with the maximum 
speed; and (iii) random choice. The identity of the joint highlighted in red is possibly 
updated by each criterion every second (making it difficult for the user to guess when the 
criterion applied in a specific video is, e.g., a random choice). The order of the three 
criteria is randomized among the three videos so that the specific criterion applied to each 
video is not predictable by the user. For a fair evaluation, the criteria themselves are also 
completely unknown to the user (i.e., the user has no idea how they are named and how 
they work). During the survey, the participant is asked to choose the video that better 
represents the evolution of the most relevant joint responsible for originating the dancer’s 
movement. Once a user has selected one video, he/she is asked to declare how confident 
he/she is in his/her choice by selecting a value from 1 to 5 on a 5-point Likert scale (levels: 
not confident, not so confident, neutral, confident, very confident). The participant can see 
all the videos as many times as desired and has to answer both questions (video choice 
and confidence level) before proceeding to the next triplet of videos. Each participant has 
to rate ten triplets of videos proposed from a selection of one hundred triplets using a 
Latin square selection method. The website was submitted to people with three different 
levels of expertise in dance: professionals, semi-professionals, and novices/non-dancers. 
A total of 22 people took part in the evaluation. Each participant self-evaluated his/her 
own level of expertise. The general information about the participants is as follows: 
professionals: 8 participants (3 male, 5 female), with a mean age of 42.75 years (std 9.56 
years), semi-professionals: 6 participants (3 male, 3 female), with a mean age of 30 years 
(std 4.47 years), novices/non-dancers: 8 participants (6 male, 2 female), with a mean age 
of 35.5 years (std 7.4 years).  
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In the first two cases, the dancers were, respectively, experts and amateurs in 
contemporary dance. 
 
Some results of the chosen type from among the three types of different stimuli are 
presented in the Table 1 and in the diagram shown in Figure 4. Both demonstrate that the 
results of the validation of the proposed method are promising. Indeed, the Shapley value 
method was selected in the large majority of cases. 
Table 3 

 

  
 Figure 6: Participants’ choices. 

  
 
Table 4 shows, for two selected frames, the first 5 joints, ordered non-increasingly with 
respect to their Shapley values, normalized with respect to the maximum Shapley value 
in each frame. The associated normalized Shapley values are also reported in the table. 
The movements associated with the two frames are, respectively: 
a) a sudden leaning down to the left with the trunk and the head, followed by a rotation to 
the right, with a final rising of the trunk and head, where the shoulder centre is clearly the 
origin of movement; 
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b) a rotation and extension toward the right of the performer, where the right elbow and 
right shoulder are clearly leading the movement of the whole body. 
In both cases, the origin of movement is correctly identified by the proposed approach. 
The two frames illustrate, respectively, the following situations, which were quite often 
observed during the analysis of the specific motion capture data set: 
a) a case in which the first and second largest Shapley values are very well separated 
and (at least) the first largest one is uniquely achieved; 
b) a case in which there are two joints with the largest Shapley value, but these joints are 
connected by a physical edge in the body graph, and the second largest Shapley value 
(which, in the second column, corresponds to the third joint) is very well separated from 
the first one. 
 Table 4 

1st frame 2nd frame 

shoulder centre (1.00) Right elbow (1.00) 

head (0.46) Right shoulder (1.00) 

right ankle (0.40) Right hip (0.53) 

right knee (0.40) Right knee (0.53) 

left elbow (0.38) left ankle (0.27) 

 
Among possible developments, we would like to exploit a more complex skeletal structure 
(for which each cluster of joints is associated to a specific joint in the simpler 20-joint 
skeletal structure), making it possible to analyze movement in parallel at a finer interacting 
spatio-temporal scale in a multiple-scale approach. Using movement-related features 
different from speed (or of a higher dimensional feature vector) to compute the Shapley 
value for a comparison with the results obtained using speed as a feature. 
Incorporating multiple temporal scales. For example, one can look at a fast temporal scale 
at the very first moment of the origin of movement and at a slower temporal scale where 
one can analyse the origin of movement at a higher level. Applying the developed 
methodology to analyse the emergence of the origin of movement when two persons or 
small groups are involved in the movement itself is the next step of this work. We are 
currently running collaboration with EuroMov looking into multi-person scenarios.  
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2.1.11 Computation-Based Feature Representation 
of Body Expressions in the Human Brain 
 
For a full description please see: Poyo Solanas, Marta, Maarten Vaessen, and Beatrice 
de Gelder. "Computation-Based Feature Representation of Body Expressions in the 
Human Brain." Cerebral Cortex (2020). 
 
Humans and other primate species are experts at recognizing body expressions. To 
understand the underlying perceptual mechanisms, we computed postural and kinematic 
features from affective whole-body movement videos and related them to brain 
processes. Using representational similarity and multivoxel pattern analyses, we showed 
systematic relations between computation-based body features and brain activity. Our 
results revealed that postural rather than kinematic features reflect the affective category 
of the body movements. The feature limb contraction showed a central contribution in 
fearful body expression perception, differentially represented in action observation, motor 
preparaton, and affect coding regions, including the amygdala. The posterior superior 
temporal sulcus differentiated fearful from other affective categories using limb 
contraction rather than kinematics. The extrastriate body area and fusiform body area 
also showed greater tuning to postural features. The discovery of midlevel body feature 
encoding in the brain moves affective neuroscience beyond research on high-level 
emotion representations and provides insights in the perceptual features that possibly 
drive automatic emotion perception. 
 
It is widely agreed that humans and other primate species are experts at recognizing 
emotion and intention from face and body expressions (de Gelder 2006; Giese and 
Rizzolatti 2015). The central importance of nonverbal communication across many social 
species suggests that the brain is equipped for rapid and accurate face and body 
movement perception; yet, the mechanisms underlying this ability are still largely unclear. 
Previous research on face and body expressions has predominantly searched for brain 
correlates of symbolic emotion categories (Lindquist et al. 2012; Kirby and Robinson 
2017), disregarding the visual features that drive movement and emotion perception (e.g., 
kinematic and postural body features). This is in part due to the fact that methods for fine-
grained description of body movements were not yet available. This study used 
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computational descriptions of body expressions to investigate which features drive 
emotion and body perception and how they are encoded in the brain. 
 
Previous behavioral and computational studies have provided some indications about 
relevant features of body posture and movement, and their relation to emotional 
expressions (De Meijer 1989; Wallbott 1998; Roether et al. 2009; Kleinsmith and Bianchi-
Berthouze 2012; Piana et al. 2014; Patwardhan 2017). Some important postural features 
have been identified, including elbow flexion, associated with the expression of anger, 
and head inclination, typically observed for sadness (Wallbott 1998; Coulson 2004; 
Vaessen et al. 2018). Other form-related features that have been investigated are the 
vertical extension of the body (e.g., upper limbs remain low for sadness but high for 
happiness), the directionality of the movement (e.g., angry bodies are usually 
accompanied by a forward movement), symmetry (e.g., the movement of the upper limbs 
tends to be symmetrical when experiencing joy), and the amount of lateral opening of the 
body (e.g., hands are close to the body during fear and sadness while extended in 
happiness) (Kleinsmith and Bianchi-Berthouze 2012).  
A central, yet unanswered, question is the relation between candidate features and brain 
processes. There is sparse evidence in the literature on how particular features may be 
related to brain processes. One classical proposal is the two-stream model of visual 
processing with two separate brain pathways for form and movement information (Vaina 
et al. 1990; Giese and Poggio 2003; Milner and Goodale 2006, 2008). From the primary 
visual cortex, the dorsal stream leads to the parietal lobe and is specialized in localizing 
objects in space, processing motion signals and in the visual-spatial guidance of actions. 
The ventral stream leads to the temporal lobe and is responsible for visual form 
processing and object recognition. Two areas in this pathway have been identified that 
sustain a certain level of specialization in the processing of whole bodies and body parts: 
the extrastriate body area (EBA) in the medial occipital cortex, and the fusiform body area 
(FBA) in the fusiform gyrus (Downing et al. 2001; Peelen and Downing 2005; Schwarzlose 
et al. 2005). However, their respective functions are not yet clear and it is also not clear 
how they, alone or together, contribute to body expression perception. In addition, body 
shape and movement elicit a widespread neural response beyond the visual analysis of 
body features in body-category selective areas (de Gelder 2006; Van den Stock et al. 
2011), triggering processes related to their affective content, the conveyed action and for 
the preparation of an appropriate behavioral response (de Gelder et al. 2004; Van den 
Stock et al. 2011). The present study is the first effort to discover which specific postural 
and kinematic features could be computed from affective whole-body movement videos 
and be related to brain responses. By means of representational similarity multivoxel 
pattern analysis techniques, we investigated whether the (dis)similarity of body posture 
and kinematics between different emotional categories could explain neural responses to 
body expressions in and beyond body-selective regions. 
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Figure 7: Representational dissimilarity matrices of the kinematic and postural features. (A) Examples of 
frames from the different affective movement videos with the OpenPose skeleton. Note that participants 
were shown the videos without the OpenPose skeleton; (B) The RDMs represent pairwise comparisons 
between the 16 stimuli with regard to the kinematic (i.e., velocity, acceleration, and vertical movement) and 
postural features (i.e., limb angles, symmetry, shoulder ratio, surface, and limb contraction) averaged over 
time. The dissimilarity measure reflects Euclidean distance, with blue indicating high similarity and yellow 
high dissimilarity. Color lines in the upper left corner indicate the organization of the RDMs with respect to 
the emotional category (anger: red; happiness: yellow; neutral: green; fear: purple) of the video stimuli. 

 
We aimed at investigating whether the (dis)similarity of body posture and kinematics 
between different emotional categories could explain the neural response of brain regions 
involved in body processing. For this purpose, several areas were defined as ROI and 
their neural RDMs were computed and correlated to the emotional and feature RDMs. 
The ROIs included occipito-temporal areas that have previously shown a certain level of 
body specificity (three ROIs: FBA, EBA, and pSTS) (Downing et al. 2001; Peelen and 
Downing 2005; Schwarzlose et al. 2005; Kontaris et al. 2009; Vangeneugden et al. 2014), 
parietal and temporal areas thought to be implicated in attention and action observation 
(six ROIs: V7/3a, SPOC, SMG, pIPS, mIPS, and aIPS) (Culham and Valyear 2006; 
Grafton and Hamilton 2007; Corbetta et al. 2008; Caspers et al. 2010), and frontal areas 
involved in action observation and other higher cognitive functions (six ROIs: PMv, PMd, 
SMA, pre-SMA, inferior frontal,and frontal regions) (Grafton and Hamilton 2007; Caspers 
et al. 2010). See Figure 8 for the full results. 
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Figure 8: Average Spearman’s rank correlation across participants between the kinematic/postural feature 
RDMs and each ROI matrix. Kinematic features include velocity, acceleration, and vertical movement. 
Postural features comprise shoulder ratio, surface, limb contraction, symmetry, and limb angles. Positive r 
values indicate that a high (dis)similarity between a stimulus pair in the feature RDM also has a high 
(dis)similarity in the neural representation. A negative correlation means that a low (dis)similarity between 
two stimuli at the feature level would have a higher (dis)similarity in the neural representation. Asterisks 
and rhombi indicate significant correlations after BHFDR correction and correlations that presented 
significant uncorrected P-values, respectively (one sample t-test against 0, two-tailed). The error bars 
denote the standard error of the mean (SEM). Order or relationships across ROIs are not assumed here. 
Abbreviations: EBA, extrastriate body area; EVC, early visual cortex; FBA, fusiform body area; IF, inferior 
frontal cortex; IPS, intraparietal sulcus; p, posterior; m, middle; a, anterior; PMd, dorsal premotor cortex; 
PMv, ventral premotor cortex; pre-SMA, presupplementary motor area; pSTS, posterior superior temporal 
sulcus; SMA, supplementary motor area; SMG, supramarginal gyrus; SPOC, superior parietal occipital 
cortex. 

 
We also investigated whether (dis)similarities in body posture and kinematics between 
different emotional categories could explain the neural response at the whole-brain level. 
The computed feature RDMs were compared with the multivoxel dissimilarity fMRI 
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patterns by means of searchlight RSA. The velocity RDM was positively correlated to 
inferior frontal sulcus and precentral gyrus. Negative main effects for acceleration were 
found in middle temporal, superior frontal, and postcentral sulci while no positive main 
effects were observed for this feature. Vertical movement correlated positively with 
cingulate gyrus, whereas negatively to the frontomarginal and middle temporal gyri. With 
respect to postural features, limb angles showed a positive main effect in anterior insula 
and pSTS. Several areas negatively correlated to symmetry in the inferior and middle 
occipital gyri, precuneus, isthmus, anterior calcarine, intraparietal, and cingulate sulcus. 
Shoulder ratio negatively correlated to anterior insula, frontal operculum, putamen, ACC, 
middle frontal gyrus, cingular insular sulcus, claustrum, internal capsule, and 
parahippocampal gyrus. Surface showed main negative effects in posterior orbital gyrus, 
thalamus, anterior perforated substance, ACC, inferior and superior frontal sulci, 
putamen, and internal capsule. Only positive correlations to limb contraction were found 
in intraparietal sulcus, anterior insula, caudate nucleus, amygdala, superior frontal sulcus 
and gyrus, precuneus, posterior orbital gyrus, ACC, superior temporal gyrus, inferior 
precentral sulcus, and SMG (see Figure 9). 
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Figure 9: Clusters resulting from the searchlight RSA of the postural feature of limb contraction. The 
multivoxel fMRI dissimilarity matrices were correlated to the limb contraction RDM (upper left corner). The 
limb contraction RDM represents pairwise comparisons between the 16 stimuli with regard to limb 
contraction information averaged over time. The dissimilarity measure reflects Euclidean distance, with blue 
indicating high similarity and yellow high dissimilarity. Color lines indicate the organization of the RDM with 
respect to the emotional category (anger: red; happiness: yellow; neutral: green; fear: purple) of the video 
stimuli. Spearman’s rank correlation was used to correlate the limb contraction RDM to the multivoxel fMRI 
dissimilarity matrices. The resulting maps were z-transformed for each participant. Subsequently, a group-
level one-sample t-test against 0was performed (two-tailed, cluster size corrected with Monte-Carlo 
simulation, alpha level = 0.05, initial P = 0.005, numbers of iterations = 5000). See Supplementary Table 
R5 in Supplementary Results for more details on location and statistical values of the clusters. 
Abbreviations: ACC, anterior cingulate cortex; AMYG, amygdala; IPL, inferior parietal lobule; MTG,middle 
temporal gyrus; pIPS, posterior intraparietal sulcus; PMv, ventral premotor cortex; SFG, superior frontal 
gyrus. 

 
The present study investigated the mechanisms underlying body expression perception 
by measuring the brain representation of critical features of body movement and posture. 
Our results reveal six major findings. First, computationally defined features are 
systematically related to distributed brain areas. Second, postural rather than kinematic 
features reflect the affective category structure of the body movements. Limb angles and 
symmetry were important for differentiating neutral from emotional body movements. 
Limb angles and especially limb contraction were particularly relevant for distinguishing 
fear from other body expressions. These two features were represented in several 
regions including affective, action observation and motor preparation networks. Third, the 
pSTS differentiated fearful from other affective categories using limb contraction rather 
than kinematics, despite this area being known for its involvement in biological motion 
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processing. Fourth, EBA and FBA also showed greater tuning to postural features. 
Although the pattern of feature representation in these areas was similar, the stimuli 
representation in EBA was very dissimilar to that of FBA, possibly reflecting their different 
roles in body processing. Fifth, kinematic and postural feature processing was not 
segregated into dorsal and ventral streams, with the exception of one feature: velocity. 
Finally, the brain representation of emotional categories showed a distributed pattern.  
 
By investigating mid level feature processes, this study moves the field of affective 
neuroscience forward, providing insights into the perceptual features that possibly drive 
automatic emotion perception. Features at this visual computational level may only partly 
overlap with feature descriptions used in everyday descriptions of body expressions 
(Poyo Solanas et al. 2020). Nevertheless, it is important to be aware of the limitations of 
our findings. For instance, the features defined here were selected due to their relevance 
in the literature because no feature-based and biologically plausible computational model 
of naturalistic body expressions is available (Giese and Poggio 2003; Serre 2014). We 
expect that future studies will also use larger and more diverse stimulus sets with a wider 
range of affective states and a larger participant sample, also looking into dyadic 
interactions. 
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2.1.14 Automatic Detection in the Context of 
Movement with Chronic Pain based on Three Novel 
Multiple-Timescales Machine Learning Architectures 
 
In this section, we present the results of the exploration of our novel machine learning 
architectures (Body Attention Net, i.e. BANet,  Movement in Multiple Time, i.e. MiMT, 
Global Workspace Network, i.e. GWN) on the problem of automatic detection of pain and 
related behaviour from body movement. Please D3.1 for descriptions of the BANet and 
MiMT which we also refer to as Multi Time neural network (MTNN) or MultiLevNN. 
 
Pain behaviour assessment is an important movement analysis problem in the context of 
chronic pain physical activities (Cook et al. 2013; Keefe and Block 1982). Automating the 
assessment of pain behaviour could enable less burdensome, objective measurement as 
well as open up the opportunity to provide real-time tailoring (e.g. via movement 
sonification) which fosters engagement of a person with chronic pain with valued physical 
activities. For example, a sonification framework based on pain behaviour assessment 
could aim to call the attention of a person with pain to their unhelpful strategies for 
performing feared or painful movements (Olugbade et al. 2019). Previous bodily-
expressed pain behaviour detection studies have focused on classification at single 
timescales. For example, (Aung et al. 2016) modelled the duration (as a proportion) of 
pain behaviour in a movement instance based on a simple fusion of motion capture and 
muscle activity data. Pain level itself could be valuable to assess automatically for the 
purpose of enabling helpful pacing of everyday physical activities based on the 
understanding of how pain drives underactivity and overactivity (Olugbade et al. 2019). 
 
For all 3 investigations (on the BANet, MiMT, and GWN respectively), we used the 
EmoPain dataset (Aung et al. 2016) which contains 3D positions for 26 full-body joints, 
13 full-body angles derived from these, and muscle activity data for 4 upper and lower 
back locations of people with chronic pain and healthy control participants. The data were 
captured while the participants performed 8 exercise movements (sit-to-stand, stand-to-
sit, bend, reach forward, walk, sitting, standing, one leg raised while standing). People 
with chronic pain provided self-reports of pain after each exercise type on a scale of 0 to 
10. Four clinicians further provided annotations for the exercise instances of this group of 
participants, for 6 pain behaviours (guarding/stiffness, hesitation, bracing/support, abrupt 
action, limping, rubbing.stimulation) in continuous time and as discrete values 0 for 'not 
present' and 1 as 'present'. 
 

Study 1: Weighted Fusion of Time and Anatomical Region with The BANet 
 
A contribution of the BANet is its importance weighting of time for each movement 
dimension (e.g. hip angle) and further weighting of each dimension overall. Further details 
can be found in the peer-reviewed publication of the study.  
 

https://www.researchgate.net/profile/Chongyang_Wang5/publication/334510336_Learning_Temporal_and_Bodily_Attention_in_Protective_Movement_Behavior_Detection/links/5d2f0eae299bf1547cbd5a51/Learning-Temporal-and-Bodily-Attention-in-Protective-Movement-Behavior-Detection.pdf
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Focusing on 5 (sit-to-stand, stand-to-sit, reach forward, bend, one leg raised while 
standing) of the 8 exercise types in EmoPain dataset, this study was based on the 13 full-
body joint angles of the dataset and the angular energies computed from them. Each joint 
angle is derived from the 3D positions of three consecutive joints while the corresponding 
joint energy is the square of the change in the angle with respect to the previous timestep. 
The angle and energy sequences for each exercise type participant were segmented 
based on fixed window with length = 3 seconds and overlapping ratio = 0.75 based on 
findings in (Wang et al. 2019), within each exercise instance. Zeroes were used to pad 
segments at the end of exercise instance and less than the window length. Two data 
augmentation techniques were then applied to duplicates of these segments to increase 
the data size, i.e. the number of segments. The first of these adds normalized Gaussian 
noise (standard deviation = 0.05, 0.1, and 0.15) to the duplicate (based on Wang et al. 
2019). In the second, randomly selected (probability = 0.05, 0.1, and 0.15) angles and 
energies in the duplicate are dropped, i.e. set to 0 (based on Um et al. 2017). The 
augmentation resulted in 18,653 segments. The ground truth for each segment was set 
to 'protective behaviour present' if at least 2 of the 4 raters rated any of the pain 
behaviours as present for half of the segment length and 'absent' otherwise. There were 
11,373 protective behaviour absent segments and 7,280 protective behaviour present 
segments. 
 
We evaluated the performance of the BANet on automatic discrimination between 
protective behaviour absent and present classes using leave-one-subject-out cross-
validation. To understand the value of approach used in the BANet, we compared its 
performance on automatic detection of protective behaviour based on these data with the 
performance of 4 variants of the BANet (BANet-compatibility, BANet-dense, BANet-time-
only, BANet-body-only). We also compared the BANet with 3 architectures (bidirectional 
Long Short-Term Memory neural network i.e. LSTMNN, convolutional LSTMNN, stacked 
LSTMNN) which are similar to it but do not include weighting, i.e. the machine learning 
attention mechanism which gives the BANet its name. Table 4 gives an overview of all 8 
architectures explored in this study and the hyperparameters used in training the 
respective models. The Adam optimiser and learning rate of 0.003 was used in all cases. 
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Table 4 

The BANet and 7 peer machine learning architectures that we compared it to. 

Architecture 

Attention 
(i.e. 
weighting) 
across time 

Attention (i.e. 
weighting) 
across joint 
(angle) 

Layers Types [number of 
layers, number of units] 

Training 
batch size 

BANet 

Yes 
Yes but after 
time 
attention 

1. LSTM [3, 8] 
2. 1x1 convolution and softmax 
(time attention) 
3. fully connected [2, 8] and 
softmax (joints attention) 
4. fully connected [1, 2] and 
softmax 

40 

BANet-compatible 

Yes but after 
joints 
attention 

Yes 

1. LSTM [3, 8] 
2. fully connected [2, 8] and 
softmax (joints attention) 
3. 1x1 convolution and softmax 
(time attention) 
4. fully connected [1, 2] and 
softmax 

40 

BANet-dense 

Yes 
Yes but after 
time 
attention 

1. LSTM [3, 8] 
2. fully connected [1, 8] and 
softmax (time attention) 
3. fully connected [2, 8] and 
softmax (joints attention) 
4. fully connected [1, 2] and 
softmax 

40 

BANet-time-only 

Yes No 

1. LSTM [3, 8] 
2. 1x1 convolution and softmax 
(time attention) 
3. fully connected [1, 2] and 
softmax 

40 

BANet-body-only 

No Yes 

1. LSTM [3, 8] 
2. fully connected [2, 8] and 
softmax (joints attention) 
3. fully connected [1, 2] and 
softmax 

40 

Bidirectional 
LSTMNN 

No No 
1. bidirectional LSTM [1, 14] 
and dropout probability of 0.5 

40 

Stacked LSTMNN 
No No 

1. LSTM [3, 28] and dropout 
probability of 0.5 

20 

Convolutional 
LSTMNN 

No No 
1. 1x10 convolution, 28 LSTM 
units, and max pooling 

50 
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The performance of the BANet can be seen in Table 5 in comparison with the other 7 
architectures. As can be seen in the table, the BANet outperforms all of the 7 
architectures. A paired t test over cross-validation folds, with Bonferroni correction, 
showed that this is statistically significant (p<0.05) for every comparison architecture 
except the BANet-time-only and BANet-body-only F(3.072, 89.099)=15.612, 𝜇2= 0.519); 
the significance for the bidirectional LSTM was marginal. 
 
Table 5 

Mean F1 score and accuracy of the BANet and comparison architectures (in bold is the best performance 
and * is used to indicate comparison architectures which performed significantly worse, p<0.05, than the 
BANet). 

Architecture 
Mean F1 
Score Accuracy 

Number of 
trainable 
parameters 

BANet 0.8440 0.8688 2,131 

BANet-compatible 0.5720* 0.6630 6,204 

BANet-dense 0.7890* 0.8167 65,430 

BANet-time-only 0.7580 0.8060 1,767 

BANet-body-only 0.8310 0.8670 2,023 

Bidirectional LSTMNN 0.8040 0.8460 14,282 

Stacked LSTMNN 0.8120* 0.8534 18,986 

Convolutional LSTMNN 0.7370* 0.8059 40,940 

 

Another advantage of the attention weighting of the BANet is that it allows analysis of 
both temporal and anatomical segment relevance. Figure 9 shows boxplots of the 
distribution of attention scores (i.e. importance weights) for each joint angle (and its 
energy) per exercise type. It can be seen that there is a wider distribution of attention 
scores for the participants with chronic pain, particularly in the exercise segments with 
protective behaviour absent, compared with the healthy participants. This suggests strong 
salience of a few antomical segments above the others, perhaps in terms of distinction in 
timescale, with protective behaviour. The sample plots of temporal attention scores per 
joint angle and energy in Figure 10 showing larger differences in the timelines for the 
different joint angles supports this theory. 
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Figure 9: Distribution of attention scores for each joint angle (and its energy) per exercise type. The plots 
show healthy participants in green, participants with chronic pain and protective behaviour absent in blue, 
and participants with chronic pain and protective behaviour present in orange. 

 
 

 
Figure 10: Sample plots of temporal attention per joint angle (and its energy) in a stand-to-sit exercise 
instance for a healthy participant (left) and two participants with chronic pain (middle and right). 
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We propose a novel neural network architecture named BANet which performs weighted 
fusion of movement time and anatomical regions. This approach outperforms similar 
architectures without explicit weights in fusion, with weights only  for time or anatomical 
region but not both, or with the weighted fusion of anatomical regions before time.  
 
Analysis of these weights, which are learnt by the network based on data, suggests 
stronger differences in timescales of anatomical segments during anomalous movement 
behaviour. First, this highlights that multiple timescales occur not just over time itself but 
also across the different degrees of freedom of movement. We have developed a 
movement sonification framework that aims to apply multi-dimensionality of time 
(attention time and the different times of each degrees of freedom of movement) in chronic 
pain scenarios. On one hand, this could be used to provide self-awareness (attention) in 
real time to a person with chronic pain about how they are moving. On the other hand, it 
could serve as to augment an observer's (the person with pain themselves or a clinician) 
visual assessment of movement. More details about the sonification framework is 
reported in D3.1.  Second, it raises questions about how much the network attention 
weighting tells us about the timescales involved in the interpretation of movement 
behaviour by the clinicians who provided protective behaviour labels. We are carrying out 
further analyses of the attention scores to understand what they imply in this respect. 
Further, we are additionally conducting an observation study aimed at finding implicit 
models of pain and movement that physiotherapists use to make clinical observations 
and interventions. 
 

Study 2: Using The MiMT to Learn Multiple Timescales of Pain Behaviour 
Labels based on Movement Dimensions with Multiple Timescales 
 
The MiMT models body movement at multiple timescales particularly accounting for 
independence-cum-coordination between multiple anatomical segments similar to the 
BANet but also accounting for different timescales of movement interpretation (at level of 
a single time step and at the level of multiple timesteps). A publication manuscript on this 
study has been submitted for peer review. 

 
While the joint angles used for Study 1 have the advantage of being location invariant, 
we chose to use the 3D full-body positions of the EmoPain dataset in Study 2 because 
they characterise movement execution in a more intuitive way. We excluded eight of the 
26 joints (left and right fingertips, ankles, heels, and toes) in our use of the positional data 
in this study due to the higher level of noise in their position estimates. To minimise the 
dimensionality of the data, we additionally excluded the crown joint given that the 
remaining joints include the head and neck. This resulted in 17 full-body joints. We 
segmented exercise instances in the EmoPain dataset (except the walking exercises and 
for participants with chronic pain alone) using overlapping 3-second windows based on 
(Wang et al. 2019) (overlap = 0.25 seconds). The label for a frame (timestep) in a segment 
was set as of guarding if at least two raters labelled guarding behaviour as present at that 
frame, otherwise the label was set as not of guarding. The label for a segment (multiple 
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timesteps) was set as guarding behaviour if all the frames in the segment are of guarding 
label, not guarding behaviour if all the frames are not of guarding, and mixed otherwise. 
We used data augmentation to increase the minority classes at the segment level 
(guarding behaviour, mixed) by creating mirror duplicates across permutations of the 
three axes (based on Olugbade et al. 2020) as well as translated, scaled up/down 
duplicates. This resulted in 17,185 and 1,394 instances respectively for the training and 
validation sets. 
 
We evaluated the MiMT on automatic discrimination between of guarding and not of 
guarding at the frame level and between guarding, not guarding, and mixed classes at 
the segment level. This evaluation was based on hold-out validation where the subject 
sets in the training, validation, and test sets are mutually exclusive. To understand the 
value of the approach of the MiMT (separate but shared time encoding and multiple 
timescales of the same label), we compared its performance with 3 architectures derived 
by ablation of the MiMT (MiMT-single-input-time, MiMT-frame-output-time-only, MiMT-
segment-output-time-only). Table 6 provides an overview of the differences between the 
architectures. The time encoder of the MiMT (and the comparison architectures) was 
based on 3 LSTM layers each with 3 units. Single LSTM and fully connected layers each 
with 15 units were used for the classifier with additional global average pooling and 
sigmoid activation for the frame level output and a single layer LSTM and softmax 
activation after further multiplication with the time encoder output for the segment level 
output.  Each model was trained with the Adam optimizer at learning rate and batch size 
of 0.005 and 200 respectively. 
 

Table 6 An overview of the architectures compared with the MiMT. 

Architecture 
Separate but shared time 
encoding of the input 

Frame level 
output 

Segment level 
output 

MiMT Yes Yes Yes 

MiMT-single-input- time No Yes Yes 

MiMT-frame-output-time-only Yes Yes No 

MiMT-segment-output-time-only Yes No Yes 

 
Table 7 shows the performance of the MiMT. As can be seen in the table, the MiMT 
performs much better than chance level detection (0.5 for the frame label, 0.33 for the 
segment label). The MiMT further outperforms its three variants suggesting that 
combination of both the separate but shared time encoding for the input and the multiple 
output timescales is efficacious. 
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Table 7 Mean F1 score of the MiMT and comparison architectures (in bold is the best performance). 

 Mean F1 score 

Architecture Frame label Window label 

MiMT 0.63 0.46 

MiMT-single-input- time 0.50 0.34 

MiMT-frame-output-time-only 0.59 - 

MiMT-window-output-time-only - 0.33 

 
Figure 11 shows two example plots of the activations for each separate (but shared) time 
encoding. To maximise contrast, we only sampled every 20th frame in these plots. Each 
band for each group of segments represents the activation for one of the three units of 
the encoder.  Comparing the bands for the lower left and right limb groups of segments 
clearly show coordination between the two groups of segment yet there are differences 
in changes in the activations over time further highlighting that different degrees of 
freedom have different timescales that have moments of synchronization. 
 

 
Figure 11: Time encoder activation for two different exercise segments (left, right) and two different exercise 
types and participants 

 
Building on the BANet which had different but shared time encoding for different groups 
of anatomical segments, we propose the MiMT architecture that additionally learns 
multiple label timescales simultaneously. Our findings suggest that the two elements are 
together valuable for modelling the multiple timescales in movement data. They further 
highlight the importance of investigating timescales of movement assessment as is one 
of the aims of our observation study with physiotherapists. We plan to extend the MiMT 
by integrating it with other multiple timescales machine learning architectures. 
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Study 3: Multimodal Movement Data Fusion based on the GWN 
 
The GWN addresses the differences in timescales between multiple modalities of 
movement, using the machine learning attention (i.e. weighting) mechanism for fusion 
similar to the BANet although the attention module it uses is based on self-attention such 
that each modality assigns weights to itself and each of the other modalities. In-depth 
description of the GWN can be found in the peer-reviewed publication of the study 
(currently under embargo until the publication date). 

 
In this study, we use both the 3D full-body positions and the muscle activity data of the 
exercise instances in the EmoPain dataset. Since the exercise instances were of varying 
lengths, zero padding at the start of each instance was used to make them of uniform 
lengths. To increase the data size, i.e. the number of instances, the same mirror reflection 
of duplicates used in Study 2 was used here except that the reflection was only done 
around the y-axis. Three rotation angles were used (90°, 180°, 270°) resulting in 800 data 
instances in total. The labels for the instances from the healthy control participants was 
set to no chronic pain. The instances from the participants with chronic pain was labelled 
as with chronic pain. The instances from this group of participants was further labelled as 
zero pain if the participant reported pain intensity of 0 for that instance, low level pain if 
the pain intensity was otherwise ≤ 5, and high level pain for pain intensity > 5. 
 
We explored the GWN in two separate but related classification tasks: recognition of 
chronic pain instances and pain level classification. The evaluation of the GWN in these 
tasks was based on leave-one-subject-out cross-validation. For each task, we compared 
the performance of the GWN with a baseline architecture where fusion of the multimodal 
data is based on simple fusion. Table 8 outlines the difference between the GWN and the 
baseline. In the EmoPain dataset, the two modalities were of the same sampling rate of 
60Hz, the muscle activity data having been downsampled from its original 1000Hz. For 
the recognition of chronic pain instances task, both modalities were further resampled to 
10Hz to manage the dimensionality of the training data. While the positional data has 
3x26=78 dimensions, the muscle activity data has only 4. There were 64 units in LSTM 
layer which serves as attention time encoder and ordinary time encoder for the GWN and 
baseline architecture respectively. The Adam optimisation algorithm was used for training 
the models, with learning rate and batch size of 0.001 and 32 respectively, based on grid 
search.  
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Table 8 

 An overview of the GWN and the baseline used for comparison 

Architecture 

Maps different sampling 
rates and/or degrees of 
freedom in the multiple 
modalities to a uniform 
sampling rate and 
dimensionality 

Weighted fusion of 
multiple modalities 
(based on self-
attention) 

Propagation of the 
weightings over time 

GWN Yes Yes Yes 

Simple concatenation No No No 

 
The performance of the GWN is shown in Table 9. Both the GWN and the baseline 
comparison architecture perform much better than chance level classification (0.5 for the 
recognition of chronic pain instances, 0.33 for pain level classification), the GWN clearly 
outperforms the baseline architecture. A Wilcoxon signed rank test across the cross-
validation folds indeed shows statistically significant difference between their 
performances for the recognition of chronic pain instances in particular. 
 
Table 9 

Mean F1 scores of the GWN and the comparison architecture (in bold is the best performance and * is used 
to indicate performance significantly worse, p<0.05, than the GWN). 

 Mean F1 scores 

Architecture 
Recognition of chronic 
pain instances 

Pain level 
classification 

GWN 0.92 0.75 

Simple concatenation 0.72* 0.63* 

 
We further analysed the self-attention scores of the GWN and found 5 main temporal 
patterns of attention. Table 10 gives an overview of these patterns and Figure 12 gives 
examples of these pattern types. 
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Table 10 

The 5 temporal patterns of self-attention found. 

Short 
name Long name 

Pattern (weighting are between 0 and 1 and add 
up to 1 by each modality) 

FIA Favours Itself Always weighting for self > 0.5 100% of the time 

FOS Favours Other Sometimes weighting for self < 0.5 up to 40% of the time 

FIOB Favours Itself and Other in Balance weighting for self > 0.5 40-60% of the time 

FIS Favours Itself Sometimes weighting for self < 0.5 less than 40% of the time 

FOA Favours Other Always weighting for self > 0.5 0% of the time 
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Figure 12: Plots for 2 exercise instances (top and bottom respectively) showing self-assigned attention 
scores versus time (M0 = positional data, M1 = muscle activity data). Plots on the left and right correspond 
to attention scores assigned by Modality 0 (M0) and Modality 1 (M1) respectively. The 'Head' identifier 
refers to the corresponding component of the attention computation ensemble; 'Switch #' refers to the 
number of attention switches that occur over time; and the category identifier refers to the corresponding 
attention pattern in Table 7. 

 
One of the merits of the GWN approach is that it can account for noise with an unknown 
timescale to be accounted for. We demonstrate this by conducting an investigation of the 
effect of noise on the performance of the GWN and comparing the temporal patterns of 
self-attention with and without noise. We use Gaussian noise sampled with standard 
deviation equal to one-tenth of the standard deviation of the respective data modality (i.e. 
noise standard deviation of 10 for the positional data and 0.001 for the muscle activity 
data).  Table 11 shows the performance of the GWN in pain level classification with and 
without noise in the modalities. We found no significant difference (p<0.05) between the 
performance of the GWN in both cases regardless of whether the noise was added to the 
positional data or to the muscle activity data suggesting that the GWN's approach to 
multimodal fusion indeed controls the effect of noise on the automatic detection task.  
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Table 11 

Mean F1 scores of the GWN in the pain level classification task with and without noise in the modalities. 

 Mean F1 scores  

Architecture No noise 
Noise in 3D position 
data 

Noise in muscle 
activity data 

GWN 0.75 0.72 0.72 

 
Table 9 shows how noise affected the distribution of the 5 temporal self-attention patterns. 
For the majority of data instances, the positional data modality assigns a higher weight to 
itself all through the time. For most of the remaining instances, this modality assigns a 
higher weight to the other modality all through time. The muscle activity modality also 
assigns a higher weight to itself all through time for a majority of the data instances, but 
unlike the positional data, for most of the remaining instances it instead shows the FOS 
pattern where it still assigns a higher weight to itself and not the other modality through 
most of time. Although this patterns distribution persists when noise is added to the 
muscle activity data, when noise is added to the positional data the distribution changes 
such that the positional data assigns higher weights to the muscle activity data all through 
time for much more data instances than those for which it assigns higher weights to itself 
all through time. This further highlights that the GWN enables noise in the modalities to 
be addressed in its fusion of multiple modalities. We speculate that the lack of difference 
in pattern distribution when noise was added to the muscle activity data is perhaps due 
to the lower dimensionality (4) of that modality, and so lower impact of noise overall, 
compared to that (78) of the positional data. 
 
 

Table 12 

The relative frequency of the 5 temporal attention patterns for each modality (M0=positional data, 
M1=muscle activity data). See Table 7 for the description of the patterns. 

 FIA FOS FIOB FIS FOA 

 M0 M1 M0 M1 M0 M1 M0 M1 M0 M1 

No noise 0.51 0.40 0.04 0.29 0.03 0.05 0.05 0.15 0.37 0.11 

Noise in M0 0.31 0.43 0.08 0.36 0.02 0.05 0.11 0.10 0.48 0.07 

Noise in M1 0.50 0.46 0.02 0.27 0.02 0.05 0.06 0.09 0.41 0.13 

 
We propose the GWN which fuses data from multiple modalities with different sampling 
rates and/or dimensionalities. We showed that the GWN not only outperforms simple 
concatenation of these data for pain classification based on positional and muscle activity 
data but its good performance persists even in the presence of noise of an unknown 
timescale in either of the two modalities. While the modalities used in our empirical study 
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had been (re)sampled to the same sampling rate, the timelines and timescales of events 
in the two modalities could still be different. 
 

References 
 
Aung MSH, Kaltwang S, Romera-Paredes B, Martinez B, Cella M, Valstar M, Meng H, et al (2016) The 
Automatic Detection of Chronic Pain- Related Expression: Requirements, Challenges and a Multimodal 
Dataset. IEEE Transactions on Affective Computing 7(4): 1–18. 
 
Cook KF, Keefe F, Jensen MP, Roddey TS, Callahan LF, Revicki D, Bamer AM, et al (2013) Development 
and Validation of a New Self-Report Measure of Pain Behaviors. Pain 154 (12): 2867–76. 
 
Flash T, Hogans N. 1985. The Coordination of Arm Movements: An Experimentally Confirmed 
Mathematical Model. J Neurosci. 5:1688–1703. 
 
Keefe FJ, Block A (1982) Development of an Observation Method for Assessing Pain Behavior in Chronic 
Low Back Pain Patients. Behavior Therapy 13 (4): 363–75. 
 
Olugbade TA, Singh A, Bianchi-Berthouze N, Marquardt N, Aung MSH, Williams A (2019) How Can Affect 
Be Detected and Represented in Technological Support for Physical Rehabilitation? Transactions on 
Computer-Human Interaction. 
 
Olugbade T, Newbold J, Johnson R, Volta E, Alborno P, Niewiadomski R, Dillon M, Volpe G, Bianchi-
Berthouze N (2020) Automatic Detection of Reflective Thinking in Mathematical Problem Solving based on 
Unconstrained Bodily Exploration. IEEE Transactions on Affective Computing. 
 
Um TT, Pfister FM, Pichler D, Endo S, Lang M, Hirche S, Fietzek U, Kulić D (2017) Data augmentation of 
wearable sensor data for Parkinson’s disease monitoring using convolutional neural networks. In 
Proceedings of the 19th ACM International Conference on Multimodal Interaction: 216-220. 
 
Wang C, Olugbade TA, Mathur A, De C Williams AC, Lane ND, Bianchi-Berthouze N (2019) Recurrent 
network based automatic detection of chronic pain protective behavior using mocap and semg data. In 
Proceedings of the 23rd International Symposium on Wearable Computers:225–230. 

 


