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1. INTRODUCTION 

This document presents an update to the first results on models and algorithms presented in D1.6 

(released in December 2020), on multi-temporal predictive models elaborated in the context of dyadic 

and group synchronisation in human ensembles, integrating fast-time signatures of participants (e.g., 

eigen frequency, amplitude), multisensory coupling functions (of visual, auditory, haptic and tactile 

types), and their consequences on entrainment and synchronization (phase and period), as well as low-

time psychological and social modulators (e.g., mood and attitudes, likeability, rapport, social 

competences and emotion), and expressive qualities of gesture.  

As detailed in D1.6, specific predictions are tested in WP2, based on modelling and experimental effort 

to uncover the emergence of dyadic and group synchronisation (e.g., Alderisio et al., 2017; Zhong et al., 

2018) at different levels in the EnTimeMent multiscale approach.  

The models and algorithms that are being developed by the consortium can be divided into two families: 

approaches based on machine learning, and approaches based on computational models and algorithms 

based on different techniques, such as the integration of graph theory and game theory to measure the 

joint origin of human movement (Kolykhalova et al 2020), and computational models of the individual 

motor signature (Slowinski et al 2016). 

In section 2 we present an initiative of the EnTimeMent ML Technical Group on periodic internal 

meetings on the role of ML in EnTimeMent. The following sections present updates with respect to the 

specific models and algorithms presented in D1.6, Section 2. 

 

2. MACHINE LEARNING FOR MOVEMENT 

ANALYSIS: INTERNAL PERIODIC MEETINGS 

 

The Consortium organized a technical group of researchers on Machine Learning, to continue to analyze 

and exploit the themes described in the previous deliverable D1.6. In this section we report the new 

initiative involving the EnTimeMent Consortium, started at the beginning of the third year of the project. 

It consists of periodic meetings of the internal technical group, focusing on brainstorming sessions on 

the role of Machine Learning in the modeling of multiple temporal scales in the prediction and analysis 

of human movement. Specific research scenarios are addressed and shared among partners, and useful 

feedback are shared between the whole EnTimeMent community. In particular, several topics have been 

discussed so far with a special interest on discussion on shallow/deep learning models and on how these 

models can be applied in different contexts faced in the EnTimeMent project. 

To sum up, a first (online) meeting was held in February to define the internal working group and the 

organization of the periodic meeting: then, three meetings took place the last Friday of April, May and 

June.  

In the first meeting/brainstorming session, KTH showed their state-of-the-art and shared with the 

community how deep learning models can be used to assess different group interactions.  

Next, on May, UNIGE showed the pipeline they used in two cases of study (TELMI dataset – “are we 

able to automatically distinguish the skill-level of each violin player?” or on the ellipsis dataset – “can 

we automatically distinguish who draw an ellipse?”). The idea is the same already reported in the 

previous deliverables where a first benchmark is achieved using shallow models and secondly traditional 

deep learning models are used to observe improvements with respect the first benchmark. Finally, deep 

learning models able to handle multiple temporal scales are exploited observing the goodness of this 

approach respect the other two which already belong to the state-of-the-art.  
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In the last meeting (end of June 2021), the main argument of interest was about developing interfaces 

between humans and various machine learning models that have emerged from previous presentations.  

Moreover, the discussions have been documented in order to further help to plan the execution front of 

what will emerge in next meetings. 

 

3. RELATION BETWEEN COMPUTATIONAL 

MODELS OF MOVEMENT ANALYSIS AND BRAIN 

FUNCTION 

 

UM published two papers and one internal report that are directly relevant for understanding the relation 

between computational models of movement analysis and brain function, and to test the biological 

plausibility of computer models. 

 

In Poyanas, Vaessen, de Gelder (2020) we computed postural and kinematic features from affective 

whole-body movement videos and related them to brain processes. Using representational similarity and 

multivoxel pattern analyses, we showed systematic relations between computation-based body features 

and brain activity. Our results revealed that postural rather than kinematic features reflect the affective 

category of the body movements. The feature limb contraction showed a central contribution in fearful 

body expression perception, differentially represented in action observation, motor preparation, and 

affect coding regions, including the amygdala. The posterior superior temporal sulcus differentiated 

fearful from other affective categories using limb contraction rather than kinematics. The extrastriate 

body area and fusiform body area also showed greater tuning to postural features. The discovery of 

midlevel body feature encoding in the brain moves affective neuroscience beyond research on high-level 

emotion representations and provides insights in the perceptual features that possibly drive automatic 

emotion perception. 

 

In de Gelder, Solanas (2021) we propose a novel approach for studying the brain’s ability to gather 

survival-relevant information from seeing conspecific body features. Specifically, we propose that 

behaviorally relevant information from body expressions is coded at the levels of midlevel features in 

the brain. These levels are relatively independent from higher-order cognitive and conscious perception 

of bodies and emotions. Instead, our approach is embedded in an ethological framework and mobilizes 

computational models for feature discovery. 

 

In Zhan, Goebels, de Gelder (2021) we investigate the subjective and the objective side of action and 

emotion perception (https://doi.org/10.1101/2021.04.15.439961 doi: bioRxiv) represented in whole 

body images using both ultra high field fMRI and computational analysis of subjective verbal reports. 

We examined the representational geometry of bodily action- and emotion-understanding by mapping 

individual subjective reports with word embeddings, besides using conventional univariate/multivariate 

analyses with predefined categories. Dimensionality reduction revealed that the representations for 

perceived action and emotion were high dimensional, each correlated to but were not reducible to the 

predefined action and emotion categories. With searchlight representational similarity analysis, we 

found the left middle superior temporal sulcus and left dorsal premotor cortex corresponded to the 

subjective action and emotion representations. Furthermore using task-residual functional connectivity 

and hierarchical clustering, we found that areas in the action observation network and the 

semantic/default-mode network were functionally connected to these two seed regions and showed 

similar representations. Our study provides direct evidence that both networks were concurrently 

involved in subjective action and emotion understanding. 
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4. COMPUTATIONAL MODELS AND 

ALGORITHMS BASED ON THE INTEGRATION OF 

GRAPH AND GAME THEORIES 

This section presents new results based on the extensions of the models and algorithms developed by 

UNIGE based on the integration of graph and game theory, described in D1.6 and published in 

Kolykhalova et al. (2020).  

 

Besides the frameworks discussed in D1.6, the investigation of the Origin of Movement (OoM) is useful 

also in other contexts. As an example, in rehabilitation the detection of the origin of movement can help 

in enabling a patient to learn how to perform a movement (e.g., how to stand up from a chair) correctly, 

in order to avoid injuries. In other words, the patient could learn (or re-learn) how to perform a movement 

by avoiding a specific hurting joint to be the origin of movement. As a second example, in the case of 

athletes or musicians, the comparison among teachers and students of the origin of movement and of its 

propagation could help the latter to imitate the former’s behavior, in order to improve their performance. 

Similarly, by comparing movements performed by the same person in different repetitions of the same 

gesture, one could make that performance highly reproducible, which is needed again in the case of 

athletes and musicians (e.g., a pianist may want to perform a technical gesture in the same way both in 

the study room and during a concert). 

 

The model and the methodology described in D1.6 is under and extension in several directions: 

 

- Exploiting a more complex skeletal structure (for which each cluster of joints is associated to a 

specific joint in the simpler 20-joint skeletal structure), in such a way to allow the analysis of 

movement at a finer interacting spatio-temporal scale, adopting a multiple-scale approach.  

 

- Using movement-related features different from speed (or belonging to a higher dimensional 

feature vector) to compute the Shapley value, on order to get a comparison with the results 

obtained in Kolykhalova et al. (2020) using speed as a feature. 

 

- Incorporating multiple temporal scales. For example, one can look at a fast temporal scale as a 

first step of the analysis of the origin of movement, then at a slower temporal scale where one 

can analyse the origin of movement at a higher level.  

 

- Using the time series of the OoM feature derived from the vector of Shapley values at each time 

instant, in order to train a binary classifier to discriminate different gestures, or to distinguish 

movements performed either by teachers or students. 

 

- Applying the developed methodology to analyze the emergence of the OoM when two 

individuals or small groups are involved in the movement itself. In this case the graph nodes are 

not anymore the joint of an individual person, but each person of the group is a node of a more 

complex “organism” formed by the social group.  This extension of the theoretical framework is 

also in the direction of observing movement at different spatio-temporal scales.  

 

Preliminary results on some of these extension are contained in (Matthiopoulou et al., 2020) and were 

presented in a joint UNIGE-EuroMov paper at the ACM ICMI 2020 EnTimeMent Workshop. The 

additional features, beside speed, investigated therein are tangential acceleration and angular 
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momentum. Moreover, the above-mentioned work investigates the loss in information associated with 

the reduction of the original 62-joint skeletal structure to a 20-joint one, after a manual clustering of 

joints performed on the original structure. An additional feature, called “mass distribution”, is defined 

theiren, too. Loosely speaking, such feature quantifies how much each cluster of joints behaves as a rigid 

body. A small coefficient of variation of that feature is then associated with a small loss of information 

when moving from the more complex skeletal structure to the less complex one. Further developments 

of this research will be presented in September 2021 at ODS - International Conference on Optimization 

and Decision Science (Gnecco et al., 2021), allowing a fruitful cross-fertilization with people working 

in the area of optimization. 
 

Theoretical issues associated with the classification of large data sets such as those arising in the present 

project were investigated in (Kůrková and Sanguineti, 2021). A probabilistic model of the relevance of 

classification tasks was proposed therein. Correlations of classifiers with input–output functions 

implemented by connectionistic models used in machine learning were estimated, with particular 

attention to the effects of increasing sizes of sets of data to be classified. 

 

References 

 

Gnecco, G., Sanguineti, M., Camurri, A., Bardy, B., and Mottet, D. (2021).  Comparing Features for 

Detecting the Origin of Movement based on a Graph-Theoretical Cooperative Game Model. To be 

presented at the International Conference Optimization and Decision Science (ODS 2021) 

 

Kůrková, V., and Sanguineti, M. (2021). Correlations of Random Classifiers on Large Data Sets. Soft 

Computing, to appear. DOI: 10.1007/s00500-021-05938-4 

 

Matthiopoulou, O., Bardy, B., Gnecco, G., Mottet, D., Sanguineti, M., and Camurri, A. (2020). A 

Computational Method to Automatically Detect the Perceived Origin of Full-Body Human Movement 

and its Propagation. In Companion Publication of the 2020 ACM International Conference on 

Multimodal Interaction  (ICMI 2020), pp.449-453. 

 
Matthiopoulou, O., Gnecco, G., Sanguineti, M., Camurri, A., Bardy, B., and Mottet, D. (2020). Detecting 

the Perceived Origin of Full-Body Human Movement via Shapley Values Games on Graphs. 

International Conference Optimization and Decision Science (ODS 2020) 

 

Kolykhalova, K., Gnecco, G., Sanguineti, M., Volpe, G., and Camurri, A. (2020) Automated analysis of 

the origin of movement: An approach based on cooperative games on graphs, IEEE Transactions on 

Human-Machine Systems, vol. 50, pp. 550 – 560. DOI: 10.1109/THMS.2020.3016085 

 

5. MECS - THE MULTI-EVENT-CLASS 

SYNCHRONIZATION ALGORITHM (UNIGE) 

Synchronization is a fundamental component of computational models of human behavior, at both 

intrapersonal and inter-personal level. Event synchronization analysis was originally conceived with the 

aim of providing a simple and robust method to measure synchronization between two time series. 

UNIGE developed a novel method extending the state-of-the-art of event synchronization techniques: 

Multi-Event-Class Synchronization (MECS), already described in D1.6. The model has been refined and 

completed, described in a paper submitted to a top-ranked IEEE Transactions (currently under revision). 

MECS measures synchronization between relevant events – belonging to different event classes – that 

are detected in multiple time series. Using MECS, synchronization can be computed between events 

https://doi.org/10.1007/s00500-021-05938-4
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belonging to the same class (intra-class synchronization) or between events belonging to different classes 

(inter-class synchronization). In our paper (Volpe et al, submitted paper) , we also show how our 

technique can deal with macro-events (i.e., agglomerations of events satisfying specific temporal 

constraints) and macro-classes (i.e., agglomerations of classes). Finally, our submitted paper presents a 

case study in which we exploit MECS to compute synchronization between multimodal channels “on-

the-fly”. In particular, the proposed example shows how synchronization between respiration and full-

body movement of a person explains different movement qualities such as fluidity and impulsivity. Next 

steps in EnTimeMent will include the extension of our MECS algorithm to compute event 

synchronization at multiple time-scales. An approach to this problem was proposed recently (Eero et al 

2017).We believe MECS can support research on synchronization processes both at an intra-personal 

and at an inter-personal level. Implementing MECS as a module in the EyesWeb platform makes it freely 

available to the scientific community, contributing to shed light on phenomena that range from neuronal 

activity, to human behavior analysis, up to social interaction and cooperation in teams. 

References 

Gualtiero Volpe, Paolo Alborno, Maurizio Mancini, Radoslaw Niewiadomski, Stefano Piana, Antonio 

Camurri (2019) MECS – The multi-event-class synchronization algorithm. JAM8 – Intl Joint Actions 

Meeting, Genoa. 

Gualtiero Volpe et al (submitted) MECS – The multi-event-class synchronization algorithm. 

 

6. CAPTURING HUMAN MOVEMENT AND 

SHAPE INFORMATION FROM SMALL GROUPS TO 

EXTRACT EXPRESSIVE AND SOCIAL FEATURES – 

USING MARKER-LESS TECHNIQUES 

As an update to our previous study as described in section 1.6 we are now performing the same studies 

with an updated version of the pose estimation algorithm, AlphaPose (v0.4.0). To quickly recap, our 

method involves the conversion of time domain data to the frequency domain. Our previous 

methodology involves the FFT. To test alternative methods, where there shall be no constraints 

pertaining to the assumption of the linearity as is the case of FFT, we are also exploring the possibility 

of using HHT. The two methods being fundamentally different, their results will be interesting to 

explore. 

We have also looked at expanding our previous data set by including a wider range of annotated 

videos, which will allow us to better understand the range of our hypothesis. Additionally, we also 

plan to perform an analysis of the audio of our datasets for the sections under observation using the 

MIR toolbox in Matlab. This audio analysis will be helpful in interpreting the PLV results and will be 

a novel aspect of this study. 

These efforts will soon be condensed into a paper that we plan to publish soon. 

 

References 
 

Lachaux, J. P., Rodriguez, E., Martinerie, J., & Varela, F. J. (1999). Measuring phase synchrony in 

brain signals. Human brain mapping, 8(4), 194-208 
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Computing 
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7.  HIERARCHICAL HUMAN ACTIVITY 

RECOGNITION AND PROTECTIVE BEHAVIOUR 

DETECTION (PUBLISHED IN [WANG ET AL. 

2021]) 
Joint modelling of functional movement and cognitive/affective movement is a practical approach to 

machine perception as it enables comprehensive appreciation of scenes. However, a more fundamental 

value is based on the fact that cognitive/affective experiences are usually not isolated, but rather typically 

occur within everyday functioning. For certain applications, the cognitive/affective experience is even 

particular to the functional movement being performed. This is certainly the case for protective 

behaviours (i.e. behaviour intended to protect from harm or exacerbation of pain, typically bodily 

expressions [Sullivan et al. 2006]) which are embedded in the performance of the movement that the 

person finds challenging. In such cases, knowledge about the aim of the functional movement (e.g. the 

activity goal) can enable interpretation, or identification in the first instance, of cognitive/affective 

behaviour. Cognitive/affective expression could occur at the different levels of abstraction in human 

movement abstraction from discrete [Kleinsmith et al. 2011] (pose) to increasingly continuous (gesture, 

action, interaction, activity) [Edwards, Deng, and Xie 2016][Karg et al. 2013]. Thus, whereas on one 

hand, there is value in integrating activity recognition in affective behaviour detection, on the other hand, 

it may be beneficial to account for the different temporal scales of these two tasks. 

 

This is one of the main motivations behind our Hierarchical Human Activity Recognition and Protective 

Behaviour Detection (Hierarchical HAR-PBD) architecture. Figure 1 gives an overview of the 

architecture. One of the primary characteristics of the architecture is the separate spatial and temporal 

encodings for human activity recognition and protective behaviour detection while the prediction for 

human activity recognition system further feeds into the protective behaviour detection task. The same 

underlying architecture (a Graphical Convolution and Long Short-Term Memory neural network, GC-

LSTMNN) is used for both tasks, and the human activity recognition module is first pre-trained before 

being integrated in the protective behaviour detection module. The weights of the human activity 

recognition module are frozen in the training of the latter so that the human activity recognition can 

inform protective behaviour detection without the module for the latter enforcing its temporal scales on 

that for the former. The underlying architecture, the GC-LSTMNN, is described fully in deliverable D3.7 

while results of experiments on the Hierarchical HAR-PBD are reported in deliverable D2.2. 
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Figure 1. Hierarchical Human Activity Recognition and Protective Behaviour Detection 
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8. SONIFICATION IN SCENARIO 2 (UCL) 

In work led by a UCL student collaborator under the supervision of Nicolas Gold, we (UCL) have 

developed a new prototype sonification that maps movement data directly to musical properties 

(Neubauer et al, 2021).  The resulting sonification has four levels designed to address a range of factors 

in pain-related movement: anxiety reduction (through ambient, slow attack/release sounds), fostering 

feelings of achievement and progress (chime sounds for movement threshold achievement), and 

objective self-monitoring (filtered pink noise related directly to angular velocity of joint movement, and 

parameters of a granular synthesiser modified to convey energy through sound coherence and 

decoherence).  The combined soundscape creates a complex and manipulatable whole.  At present, pre-

recorded data is replayed as if live, and we are working to link the live sensors directly to the sonification 

engine.   Participant-based evaluation is planned to follow. 

 

References 

  

Neubauer, L., Gold, N.E, Olugbade, T., Williams, A. CdeC., Berthouze, N. (2021) “Functional 

Musical Sonification for Chronic Pain Support”, Ubiquitous Music 2021, Porto (and online), Sept 6-8, 

to appear.  

 

 

9. INTERACTIVE SONIFICATION IN 

SCENARIO 3 (UNIGE) 

 

We developed an interactive sonification model of movement expressive qualities, and a corresponding 

software prototype for the DanzArTe – Emotional Wellbeing Technology project, as a part of Scenario 

3 of EnTimeMent (https://www.lavanderiaavapore.eu/2021/03/23/danzarte-welfare-territoriale/).  

 

The model addresses the “fear of falling” in mobility exercises for frail subjects. Three objectives have 

been proposed in the design of interactive sonification: (i) to create an interactive low-stress experience 

of sound; (ii) to reassure participants; (iii) to enhance the perception and performance of fluid 

movements. 

 

The first objective is addressed by observing guidelines for low-intrusiveness sound design (A. Cera, N. 

Misdariis, 2021), with particular attention to the relation between foreground and background, dynamic 

smoothness and avoidance of pitch repetition patterns. 

 

The second objective is addressed by eliciting a low-arousal / positive valence state, using low-

dissonance harmonies, low roughness in timbres, smoothness in dynamics, low complexity in sonic 

structure, and other strategies following criteria widely studied in scientific literature on emotion and 

music (e.g., Eerola and Vuoskoski 2013). 
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The third objective is addressed by exploiting and further extending state of the art criteria for fluidity 

sonification (Alborno et al 2016; Niewiadomski et al 2019), with particular attention to spectral flux, 

dynamic control of spectral centroid, smoothness of dynamic profiles, and other sonic variables. 

In the proposed model, fast and medium temporal scales concern expressive features including kinetic 

energy, movement fluidity, body symmetry, which create modulations of the sonifications' surface and 

spatial movement.  

Features at a slower temporal scale concern user engagement, and model the intrusiveness of the 

sonification, in order to arouse or relax the participant.  

Details on research results and evaluations of the proposed model are described in a paper in preparation. 
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