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1. THEORETICAL FOUNDATIONS, COMPUTATIONAL MODELS AND 

ALGORITHMS 

Understanding, measuring and predicting the qualities of movement imply a dynamic cognitive 

relation with a complex non-linearly stratified temporal dimension. Movements are hierarchically 

nested: a gesture sequence has a hierarchical layered structure - from high level layers down to more 

and more local components where every layer influences and is influenced by every other (bottom-

up/top-down). Every layer is characterized by a different temporal dimension: a proper rhythm from 

macro to micro temporal scales of action. This organization does not only apply to action execution, 

but also to action observation and is at the basis of the unique human ability to understand and predict 

conspecific gestural qualities. Human skill in understanding and predicting gestural qualities, and 

attempting to influence one another’s actions, depends on the capacity to create intercrossing relations 

between these different temporal and spatial layers through feedforward/feedback connections and 

bidirectional causalities, with the body as a time keeper, coordinating different internal, mental and 

physiological clocks. In 1973, Johansson showed that the human visual system can perceive the 

movement of a human body from a limited number of moving points. This landmark study grounded 

the scientific bases of current motion capture technologies. Recent studies proved that the information 

contained in such a limited number of moving points does not concern only the activity performed, but 

can also provide hints about more complex cognitive and affective phenomena: for example, Pollick 

(2001) showed that participants can infer emotional categories from point-light representations of 

everyday actions. Studies using naturalistic images and videos have established how fluent we are in 

body language (de Gelder, 2016).  Very few studies consider the temporal dynamics of the stimulus, 

and how affective qualities may be perceived faster than other qualities (Meeren et al 2016), be 

interlinked and change over time. In other words, time is a crucial variable for these processes. Such 

time intervals are the time intervals of human perception and prediction, i.e., this is a human time, 

which integrates time at the neural level up to time at the level of narrative structures and content 

organization. Current technologies either do not deal with such a human time or they do in a quite 

empirical way: motion capture technologies are most often limited to computation of kinematic 

measures whose time frame is usually too short for an effective perception and prediction of complex 

phenomena. While a lot of effort is being spent improving such technologies in the direction of more 

accurate and more portable systems (e.g., wearable and wireless), such developments are incremental 

with respect to a conceptual and technological paradigm that remains unchanged. Furthermore, most 

systems for gesture recognition or for analysis of emotional content from movement data streams 

adopt time processing windows whose duration is fixed and is usually empirically determined. 

 

Focusing on this last point, we can observe how these effects can be studied using several techniques. 

We want to create a mathematical model as accurate as possible, which is able to have predictions and 

able to understand actions performed by a complex system like the human one. To manage this type of 

problem from an analytical point of view, there are two different approaches: 

1. Semi-empirical techniques are used to extract feature in order to define the state of the system 

and how it evolves over time. Since the features are derived from statistical measures (such as mean, 

variance and standard deviation), the operations that can be done using these data are very simple and 

limited to the scenario from which the data comes. Therefore it would be impractical to compare these 

features in different situations. Another consideration is that these techniques use time processing 

windows whose duration is fixed and is usually empirically determined. To use this type of approach is 

therefore too penalizing because a lot of information is lost, risking to apply only estimates on the 

behavior of a specific low level layer whereas, at higher level, a wrong prediction and understanding of 
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the action that is performed. Given the numerous limitations of this approach and the impracticality of 

their use in our project, it is clear that more advanced data analytic techniques are needed. 

2. Advanced data analysis techniques allow a greater abstraction of the problem and therefore 

identify an optimal model useful for comparing results coming from different scenarios. Techniques 

often used are neural networks (NNs). These networks, once defined the basic architecture, and 

therefore the criterion with which the comparison is made, are able to be extended to similar problems. 

More complex features compared to simple statistical measurements are learned directly in the neural 

network training phase. However, NNs require a large amount of data to identify which features will 

be particularly useful for solving a specific task. Once these features are obtained these can be re-used 

to solve similar problems, thus allowing a greater abstraction of the problem. Therefore, it is clear how 

neural networks are a very powerful tool able to satisfy the themes of our project. As we have seen, it 

is sufficient to have a good number of data in order to have features that can be compared with each 

other by creating a model that is able to manage complex tasks such as the prediction of actions in 

hierarchical layered structures. Moreover, this type of structure allows an accurate analysis of the 

movements performed in an action, not simply analyzing estimates on the behavior of a given layer in 

its execution. Extensions of simple networks to more complex models such as Deep Neural Networks 

(DNNs) (Bengio, 2015), allows us to manage different time windows making it an extremely powerful 

tool. 

 

An approach based on the use of statistical measurements is too limiting for the purpose of this project. 

In particular, as we have seen previously, semi-empirical techniques are too bound to the data from 

which features are extracted. Successively applying these features to action prediction tasks turns out 

to be an impractical choice for managing time sequences with hierarchical layered structure. Being this 

way based on simple estimates, a correct observation of the actions is particularly difficult. Moreover, 

these techniques use time processing windows whose duration is fixed and is usually empirically 

determined. In this way a loss of information is possible because some fragments of action can be 

omitted. 

The best choice is therefore directed to the use of the second approach, where advanced data analysis 

techniques are used to have a more general abstraction of the problem addressed. In particular, we 

choose an approach aimed at (deep) neural networks so that features are learned in the training phase 

of the network itself and will be subsequently reused to handle similar situations. These features will 

be more complex than simple statistical measurements. As we have seen, however, a large number of 

data is needed to have increasingly more articulated and useful features for the task we want to solve. 

Furthermore, considering temporal sequences, it would be extraordinarily complicated (or even 

impossible) to apply approaches based on statistical measurements, analyzing only time window 

empirically determined. For the management of this type of problem, a subset of Deep Neural 

Networks capable of handling time sequences is used: recurrent neural networks. By analyzing the past 

information, these architectures allow an estimate of the future state. However, this information may 

not be sufficient: intuitively, to predict actions performed by a complex system, it will be necessary to 

predict all the components that make up the system itself in order to have a more accurate prediction. 

Therefore, it will be useful and significant to choose a model that includes the possibility of managing 

hierarchical layered structure of all the components that identify the system, each with its own 

temporal dimension. 

A second consideration is due to the fact that usually the actions of a system are repeated or, simply, 

similar systems are able to perform similar actions. Then to predict an action of a complex system like 

the human one, the winning choice is linked to the use of a memory system that is able to understand 

events that are easily repeated over time. Therefore, we want to create a model that presents the 

advantages of recurrent networks and extends them by integrating a memory system. 



 

  
EnTimeMent      D1.1 

 

 

 
June 2019 

6 / 73 

 

 

 

1.1 Experiments, Scenarios and Objectives: from exploration to 

convergence 

Our perspective is a human executing or observing a movement (e.g., a music or dance performance). 

We hypothesize a layered computational framework, from the physical low-level signals captured by 

sensors to the qualities – individual as well as social - that movement communicates, including 

emotions (Camurri et al 2016-MOCO intl conf). Movement at low (e.g., Motion Capture, EMG) layers 

is at a time scale of milliseconds, whilst wider time scales (e.g. NIRS, respiration) model higher layers. 

Time scales and layers are coexistent and mutually influence each other. An observer perceives salient 

expressive moments in a movement (e.g., a dance) both by its physical local low-level signals, and by 

its higher-level qualities, taking into account past events and emerging expectations: these, in their 

turn, change the observer’s perspective and awareness of the low-level. That is, an observer of the 

movement changes her priorities and the importance within the large array of perceived physical 

signals. This interaction of processes at different time scales, as a continuous dialogue of coexisting 

parallel perspectives of the observed movement is a fundamental hypothesis of EnTimeMent, whose 

aim is to move towards a computational framework consisting of such different layers, ranging from 

physical signals to high-level individual as well as social qualities emerging from movement focusing 

on different space and time scales 

 

The neuroscientific paradigm is based on the fundamental assumption that the cognitive experience of 

time requires a body. In fact, moving needs time and all our experiences, as well as their localization 

upon a reconstructed subjective experience of time, are dominated by the way we interact with our 

environment. The way we organize behaviour thus shapes the way we feel time and act according to its 

subjective representation. Human behaviour is indeed hierarchically organized in a way that each layer 

embraces a different time scale. Human behaviour is in fact constituted by goal-directed actions based 

on the synergic composition of simpler motor constituents chained together according to a precise and 

hierarchically organized “motor grammar” (Bernstein, 1967). In this view, the motor system can 

recombine or substitute motor elements to cope with a change in context, to achieve a new goal. 

Therefore, human natural experience coherently lives at the different scales characterizing human 

behaviour, at once. 

 

The involvement of partners from different disciplines necessarily implies slightly different 

approaches and interests in the common questions of synchronization, entrainment, prediction, motor 

signature, empathy, and emotion at different temporal scales. In the first months of the project, 

significant effort has been on tackling these fundamental questions with a number of different 

feasibility studies and to the definition of protocols for both lab experiments (WP2) and applied 

scenarios (WP4). This work identifies the main directions of research foci for the following part of the 

project. 

 

At this point of the project (M6), in Deliverable D1.1 all partners present tables describing 

Experiments or Research Programs fitting within the theoretical context of EnTimeMent. Some of 

these activities are in the early planning stages whereas others are in a more mature state. Importantly, 

as it will be evident in the following tables, many of the planned activities are shared among several 

partners. Convergence on a common framework will be pursued on data collection, analyses as well as 

the theoretical framework. In fact, the updated version of D1.1 due at M18, will include a more 

detailed description of the shared activities for each of the scenario and experimental type. 

 



 

  
EnTimeMent      D1.1 

 

 

 
June 2019 

7 / 73 

 

 

In conclusion, this Deliverable is to be considered as a living document describing the iterative process 

of convergence towards a small set of core theoretical questions, with all partners sharing the same 

conceptual framework and therefore experimental and analysis setups. 

 

1.2 EnTimeMent data-sets 

Availability of large high-quality data-sets is key to the definition of the goals defined by 

EnTimeMent. In this regard, a list of publicly available data-sets, including a brief description, has 

been collected and made available by UCL (Annex 1). At the same time, several partners in the 

consortium have already collected and are in the process of collecting new data. To facilitate 

collaborative research and to foster the development of shared research questions a list of data-sets will 

be provided in the form of tables. 

 

 

2. PLANNED AND ONGOING RESEARCH ACTIVITY 

 

2.1 Prediction in Action execution and observation 

2.1.1 Bursty cortico-motor alpha coherence influence visual perception 

Title Bursty cortico-motor alpha coherence influence visual perception 

Type Experiment 

Question of interest The role and the non-stationarity properties of cortico-kinematic 

coherence in visual processing 

Leaders IIT-FE 

Other ENTIMEMENT 

groups involved 

None 

Experiment type (see 

WP2) 

● Task2.1: Prediction in Action execution and observation 
o Task2.2: Prediction in Dyadic Action execution and observation 
o Task2.3: Prediction in Complex Action execution and 

observation 
o None of the above 

Use Case scenario (see 

WP4) 

o Task 4.1: Scenario 1 - Healing with multiple times 
o Task 4.2: Scenario 2 - Chronic musculoskeletal pain 

management with multiple times 
o Task 4.3: Scenario 3 - EntimeMent in dancing with Times 

● None of the above 

Research objectives The main objective is to study the role played by the rhythmic 

communication between the central nervous system and the periphery in 

driving visual perception beyond its role in motor performance. 

Theoretical hypotheses Cortico-motor communication works in irregular burst of intermittent 

communication which affects the active sampling of environmental 

information.  

Operational hypotheses We measure electroencephalographic data, movement kinematics in an 

isometric upper arm contraction. We intend to verify whether the 

emerging rhythmic communication between upper and lower motor 

centers affect perception. 
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Relationship with the 

objectives of the project 

Upper and lower motor centers communicate at least according to two 

different time-scales below that of single movement - specifically at 

about 10 and 20 cycles per seconds. These constitute the basic time-

scales affecting the sampling of sensory information during movement 

execution. This research will investigate these sensorimotor timescales. 

Time schedule  Data collection terminated and analyses are ongoing. 

Methods TBA 

Participants 25 healthy participants 

Materials Custom made isometric joystick. Electroencephalography (EEG). 

Data format Matlab data structure. 

Experimental 

protocol/procedure 

Each participant is required to maintain a stable isometric contraction 

for few second, while randomly in time, a threshold visual stimulus id 

presented to probe visual sensitivity. 

Measures Force transducers on the isometric joystick. Scalp electric potentials 

(EEG). 

Results TBA 

Descriptive results TBA 

Inference statistics TBA 

Additional results TBA 

Discussion TBA 

 

2.1.2 Motor recruitment during action observation: effect of 

interindividual differences in action strategy 

Title Motor recruitment during action observation: effect of interindividual 

differences in action strategy 

Type Experiment 

Question of interest Are individual motor signature (IMS) affecting action observation 

effects? 

Leaders IIT-FE 

Other ENTIMEMENT 

groups involved 

None 

Experiment type (see 

WP2) 

● Task2.1: Prediction in Action execution and observation 
o Task2.2: Prediction in Dyadic Action execution and observation 
o Task2.3: Prediction in Complex Action execution and 

observation 
o None of the above 

Use Case scenario (see 

WP4) 

o Task 4.1: Scenario 1 - Healing with multiple times 
o Task 4.2: Scenario 2 - Chronic musculoskeletal pain 

management with multiple times 
o Task 4.3: Scenario 3 - EntimeMent in dancing with Times 

● None of the above 

Research objectives The coordination of our own actions with those of others requires the 

ability to read and anticipate what and how our partner is about to do. 

Indeed, when observing someone else moving, we can extract useful 

information such as future bodily displacements or infer higher-order 
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cognitive processes hiding behind those actions. In principle, knowledge 

about the invariant properties of movement control could support 

inferences about the unfolding of other’s actions. 

Theoretical hypotheses According to the predictive coding hypothesis, other’s action sensory 

outcomes are compared to sensory predictions generated by the same 

hierarchical neural machinery for movement preparation and execution. 

This idea is however challenged by the redundancy that characterizes 

the organization of human movement. The abundance of degrees of 

freedom available during AE suggests that different joint configurations, 

as well as spatio-temporal patterns of muscle activity, can equally be 

used to reach the same behavioral goal. In this case, any sensorimotor-

based inference about other’s actions, amount to finding a solution to a 

many-to-many mapping problem. 

Operational hypotheses According to a strong version of the direct matching hypothesis, all 

subjects requested to observe the actions should mirror the muscle 

recruitment characterizing the actor. An alternative hypothesis predicts 

that motor activities would reflect, on an individual basis, a measure of 

the distance between own IMS and observed IMS. Furthermore, if 

sensorimotor activations are greater for little IMS distance, then it is 

likely that the motor system is computing the similarity between 

observed and own IMS. On the contrary, a negative relationship, would 

suggest that sensorimotor inferences about other’s goals might be built 

by computing the difference or an error measure between one’s own 

motor template and the observed movement. 

Relationship with the 

objectives of the project 

Perceptual discrimination and prediction of other’s actions, may have a 

key role in supporting temporal and spatial interpersonal coordination. 

Here we suggest that a mapping exists between behavioral goals and the 

lower dimensionality space of whole-body configurations (i.e. 

synergies). On the top of that, everyone carry his own robust and yet 

unique way of moving (Individual Motor Signature – IMS). These two 

properties of human motor control may lead to a new one-to-one 

mapping that is function of everyone own way of moving (individual 

motor strategy, IMS). Backed by this, we hypothesize that while 

observing others’ multi-joint actions, people build sensorimotor-based 

predictions by referencing what they see to the motor engrams of their 

own IMS. 

Time schedule  Data collection finished. Data analyses running. 

Methods TBA 

Participants 31 healthy participants 

Materials Electromyography, TMS, mocap. 

Data format Matlab data structure. 

Experimental 

protocol/procedure 

Participants first perform and then observe a whole-body reaching 

action which could be executed with different IMSs. After 

characterizing subjects’ own IMS during execution, we measured their 

sensorimotor recruitment (corticospinal excitability, CSE) by 

administering single-pulse Transcranial Magnetic Stimulation (TMS) on 

their motor cortex while they observed an actor achieving the same goal 

by using different IMSs (i.e. the participant’s own IMS and a different 
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one). CSE was measured from the cortical representation of the Tibialis 

Anterior muscle (TA) that shows a clearly dissociable pattern while 

executing the two IMSs. 

Measures CSE; whole-body mocap. 

Results TBA 

Descriptive results TBA 

Inference statistics TBA 

Additional results TBA 

Discussion TBA 

 

2.1.3 Movement chain prediction in schizophrenic patients 

Title Movement chain prediction in schizophrenic patients 

Type Research Program 

Question of interest Are schizophrenic patient affected by problems in action anticipation? 

Leaders IIT-GE, IIT-FE 

Other ENTIMEMENT 

groups involved 

None 

Experiment type (see 

WP2) 

● Task2.1: Prediction in Action execution and observation 
o Task2.2: Prediction in Dyadic Action execution and observation 
o Task2.3: Prediction in Complex Action execution and 

observation 
o None of the above 

Use Case scenario (see 

WP4) 

o Task 4.1: Scenario 1 - Healing with multiple times 
o Task 4.2: Scenario 2 - Chronic musculoskeletal pain 

management with multiple times 
o Task 4.3: Scenario 3 - EntimeMent in dancing with Times 

● None of the above 

Research objectives Schizophrenics patients have recently been described as having 

problems in timing-related tasks. Specifically, it has been proposed that 

some of their sub-clinical impairments resemble those of cerebellar 

patients that are characterized by fractioned action execution. Here we 

aim at understanding if these patients are also affected by a problem in 

other’s action understanding. 

Theoretical hypotheses In this context, we aim at investigating one particular ability required 

for social interaction. Namely our ability to predict other’s intentions. 

For example, any time a motor chain is activated (e.g., grasp-to-drink), 

the observer attributes the corresponding intention to the agent (e.g., 

drinking) from the first motor act (e.g., the grasp-to). 

Operational hypotheses In the current study, we investigate specific impairments, in the absence 

of discriminative contextual cues, in using slight kinematic variations in 

the observed grasp to inform mapping to the most probable chain. 

Relationship with the 

objectives of the project 

This study would describe a specific case of psychiatric impairment that 

extend its effect to a basic social skill, which is the ability to anticipate 

intentions of conspecifics. 

Time schedule  Experiment in planning stage. 

Methods TBA 
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Participants Schizophrenic patients (N to be defined) and a matched healthy control 

group. 

Materials Action video-clips, Behavioural responses. 

Data format Matlab data structure. 

Experimental 

protocol/procedure 

Participant will be submitted to an action observation experiment. From 

the dataset developed by Cavallo and colleagues, we will selected 

representative videos showing the reach to grasp phase of grasp-to-pour 

and grasp-to-drink actions. Each video clip will be presented at two 

levels of temporal occlusion (i.e. the video will stop at 25% or 100% of 

movement duration). Participant will have to discriminate the final 

intention. 

Measures Reaction times 

Results TBA 

Descriptive results TBA 

Inference statistics TBA 

Additional results TBA 

Discussion TBA 

 

2.1.4 Individual motor signature in weight-lifting task 

Title Individual motor signature in weight-lifting task 

Type Research Program 

Question of interest  

Leaders IIT-FE, UM-EuroMov 

Other ENTIMEMENT 

groups involved 

UNIGE 

Experiment type (see 

WP2) 

● Task2.1: Prediction in Action execution and observation 
o Task2.2: Prediction in Dyadic Action execution and observation 
o Task2.3: Prediction in Complex Action execution and 

observation 
o None of the above 

Use Case scenario (see 

WP4) 

o Task 4.1: Scenario 1 - Healing with multiple times 
o Task 4.2: Scenario 2 - Chronic musculoskeletal pain 

management with multiple times 
o Task 4.3: Scenario 3 - EntimeMent in dancing with Times 

● None of the above 

Research objectives Describe the individual low-level specificity of movement control 

Theoretical hypotheses Each one of us move in the environment by planning ahead the 

coordination of a complex musculoskeletal system. Planning and 

execution of action must obey biomechanical and neural constraints and 

it is informed by past motor learning experience. All of this produce an 

individual motor signature. 

Operational hypotheses We intend to explore if in object lifting/moving there is an idiosyncratic 

weight-/mass kinematics relationship such that the gradual increase of 

weight/mass  will be handled differently by each individual by scaling 

movement properties such as peak velocity or time to peak velocity. 
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We plan to explore a moving object task (where the displacement is 

normal to the gravity field) and an object lifting task (where the 

displacement is parallel to the gravity field). 

Relationship with the 

objectives of the project 

This research activity has the scope of exploring the possibility to 

extract an individual motor signature from a simple and reliable task. 

Time schedule  Ongoing 

Methods We record motion capture data while subject do an object lifting task. 

We manipulate spatial accuracy requirements and orientation with 

respect to gravity.   

Participants TBA 

Materials Movement position data, object acceleration and orientation 

Data format Matlab data structure. 

Experimental 

protocol/procedure 

Participants are requested to lift/move objects of the same size with 

different masses     . 

Measures Movement position data 

Results TBA 

Descriptive results TBA 

Inference statistics TBA 

Additional results TBA 

Discussion TBA 

 

2.1.5 Motor equivalence in writing describe low-level individual motor 

signatures 

Title Motor equivalence in writing describe low-level individual motor 

signatures 

Type Research Program 

Question of interest Estimating presence and increase of different time scales for the same 

action performed with different intentions and/or effectors. 

Leaders UNIGE, IIT-FE 

Other ENTIMEMENT 

groups involved 

 

Experiment type (see 

WP2) 

● Task2.1: Prediction in Action execution and observation 
o Task2.2: Prediction in Dyadic Action execution and observation 
o Task2.3: Prediction in Complex Action execution and 

observation 
o None of the above 

Use Case scenario (see 

WP4) 

o Task 4.1: Scenario 1 - Healing with multiple times 
o Task 4.2: Scenario 2 - Chronic musculoskeletal pain 

management with multiple times 
o Task 4.3: Scenario 3 - EnTimeMent in dancing with Times 

● None of the above 

Research objectives 1.  Developing techniques for automated analysis of the presence of 

different time scales when the writing action is performed with different 

effectors.  
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3. Correlating the results of the automated analysis with the results of 

perceptual ratings of the multiplicity of time scales. 

Theoretical hypotheses Executing the same action in different contexts and/or with different 

effectors, changes the relative relevance of different time scales 

contained in the action itself. Hence, both the intention of an action and 

its complexity reflect into the pattern of time scales. 

Operational hypotheses Actions performed with different effectors maintain the same 

proportionality across time-scales.  

Relationship with the 

objectives of the project 

Exploring the spatial scale-invariance of actions by analysing the data at 

multiple time-scales at the same time. 

Time schedule  Early pilot data collection and ongoing planning of experiments 

Methods Certain kinds of recurrent neural networks, such as the Clockwork 

Recurrent Neural Network (CW-RNN), have demonstrated to be able to 

work well with time series associated with different time scales. Still, 

assessing the importance of recurrent neural network modules 

associated with different time scales is an open problem. 

 

In a second phase of this research program, the pattern of relevant time 

scales might be estimated by combining Recurrent Neural Networks 

(RNNs) and Cooperative Game Theory.  

As regards the former, the Clockwork RNN(CW-RNN)  and its 

variations will be considered. The network is made of g  modules of 

hidden neurons. Each module i  is associated with a different period 
iT , 

whose purpose is to capture a different time scale. “Faster” neurons 

(associated with smaller 
iT ’s) receive inputs from “slower” neurons 

(associated with larger 
iT ’s), and their weights are updated through 

back-propagation more frequently. Different modules may have 

different importance for different tasks (e.g., for certain “simple” tasks, 

the “slowest” neurons may be enough to get a satisfying performance). 

The CW-RNN will be trained via a data set obtained from the chosen 

action. 

Then, a Cooperative Game with Transferable Utility, called Clockwork 

Recurrent Neural Network Game (CW-RNN-G) will be defined on the 

trained network, such that: 

(i) the players are the network modules; 

(ii) each coalition of players corresponds to a different architecture 

of the CW-RNN, containing only the respective modules; 

(iii) the utility of coalitions is defined and computed in the following 

way: 

a. for each coalition, the network is trained using the training set; 

b. the coalition utility is the accuracy of the trained network 

computed on a validation set.  

Since the goal here is to assess the importance of different modules, it 

would be fair to re-train the network for each coalition. However, to 

save computational time, one may try to avoid a complete re-training. A 

pre-training phase could be also performed. 
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The game-theoretical concept of “Shapley value” will be used  in the 

CW-RNN-G to estimate the relative importance of different time scales. 

The Shapley value of each module represents its average marginal 

contribution to accuracy, when it is inserted in a random coalition of 

modules. 

 

(iv) The vector of computed Shapley values could be used to define a 

measure of similarity of the execution of the action with different 

intentions or effectors.  

(v) Such measure of similarity could be the Kendall’s tau correlation 

coefficient of the modules rankings obtained for different tasks.  

(vi) As an alternative, the measure of similarity could take into 

account the number of modules whose relative Shapley value is above a 

suitable threshold.  

(vii) The outcomes of this similarity analysis could be exploited to 

recognize and cluster actions performed with similar intensions or 

effectors.  

(viii) A subjective evaluation of suitable features associated with the 

task (e.g., their in terms of number of time scales involved, and the 

importance of different time scales for the specific task) could be used 

to validate such measure of similarity. This could be done via a 

suitably-designed online survey. 

 

At the end of the analysis, statistical tests could be applied to assess the 

statistical significance of the results. From a computational point of 

view, Monte Carlo sampling could be used to get approximations of the 

Shapley values, when a large number of modules is present. 

Participants TBD 

Materials Material: 

-Synchronized Audio/Video/MoCap recordings 

Data format Matlab data structure. 

Experimental 

protocol/procedure 

Participants will produce writing action in several condition. On paper 

on a board in the air, with the whole arm and with the head. The scope 

is to extract an individual spatial-scale independent kinematic 

fingerprint. 

Measures Automated multiple time scales analysis. Participants’ ratings 

Results TBA 

Descriptive results TBA 

Inference statistics TBA 

Additional results TBA 

Discussion TBA 
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2.1.6 Multi-Cue Movement Analysis using a Shared Representation 

Title Multi-Cue Movement Analysis using a Shared Representation 

Type Research Program 

Question of interest Can a shared latent representation be learned between multiple cues, so 

that data can be transferred between cues to fill in gaps in observations? 

Leaders KTH 

Other ENTIMEMENT 

groups involved 

None 

Experiment type (see 

WP2) 

● Task2.1: Prediction in Action execution and observation 
o Task2.2: Prediction in Dyadic Action execution and observation 
o Task2.3: Prediction in Complex Action execution and 

observation 
o None of the above 

Use Case scenario (see 

WP4) 

o Task 4.1: Scenario 1 - Healing with multiple times 
o Task 4.2: Scenario 2 - Chronic musculoskeletal pain 

management with multiple times 
o Task 4.3: Scenario 3 - EntimeMent in dancing with Times 

● None of the above 

Research objectives The main objective is to analyse human movements based on multiple 

cues, such as MoCap, video and IMU data, but allow some data to be 

missing. When data is missing, for example, when we only have video 

data, a shared representation will be utilized to synthesize MoCap data, 

using a framework similar to the bimodal deep autoencoder shown 

below. 

 

 

 

Theoretical hypotheses Some aspects of human movements are shared by multiple cues and can 

be captured by a shared representation, whereas others are cue specific 

and need a private representation for each cue to be fully reconstructed.  

Operational hypotheses A deep autoencoder structure, such as the one shown above, that 

includes a shared latent representation and private cue specific 

representations allows transfer of data from one cue to another. 

Relationship with the 

objectives of the project 

This experiment relates to Task 3.4: short-term gesture prediction. It 

will test the possibility of finding a shared latent representation from 
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multiple cues and use this representation for prediction in movement 

qualities over different time scales. 

Time schedule  Data collection, method development and analysis will be completed in 

the ENTIMEMENT project. 

Methods TBA 

Participants TBA 

Materials We will collect data under the scenarios such as one-on-one basketball 

and human subjects engaged in domestic work.  

Data format MoCap skeleton data, 3D skeleton / full-body positions obtained from 

video, video data, possible RGB-D data; The human activities should be 

specific enough, including all kinds of movements, such as arm wave, 

high arm wave, hand catch, throw, hand clap, kick, walking, etc.  

Experimental 

protocol/procedure 

TBA 

Measures Motion Capture:  

1. Use Qualisys MoCap to capture full body skeletons.  

2. Use Kinect V2 or other videocameras to capture data in other 

formats.  

Results TBA 

Descriptive results TBA 

Inference statistics TBA 

Additional results TBA 

Discussion TBA 

 

2.1.7 Movement qualities in musical performance 

 

Title Movement qualities in music performance 

Type Research Program 

Question of interest Exploring interactions between movement qualities at 
different time scales in musical behaviour, with reference to 
expression, interpersonal interaction and performance 
regulation 

Leaders DU            

Other ENTIMEMENT 

groups involved 

UNIGE, UM-EuroMov 
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Experiment type (see 

WP2) 

·    Task2.1: Prediction in Action execution and 
observation 
·    Task2.2: Prediction in Dyadic Action execution and 
observation 
·    Task2.3: Prediction in Complex Action execution and 
observation 
o   None of the above 

Use Case scenario (see 

WP4) 

o   Task 4.1: Scenario 1 - Healing with multiple times 
o   Task 4.2: Scenario 2 - Chronic musculoskeletal pain 
management with multiple times 
o   Task 4.3: Scenario 3 - EnTimeMent in dancing with Times 
·    None of the above 

Research objectives In line with the aims of Task 1.3, we plan to build on the 
insights and data collection of the IEMP project by exploring 
the movement qualities of musical performers at different 
time scales. 
The objective is to explore the IEMP corpus of North Indian 
Raga performances to understand the relationship of 
individual performers' movements to musical/ gestural 
phrases typical of Indian modes (raga), to prescribed 
metrical structures (tala), and to the management of 
performance (including interactions between the 
movements of different performers at both synchronisation 
(100-2000ms) and coordination (>10s) timescale). 

Theoretical hypotheses We hypothesize that it will be possible to recognise the 
salience of an individual's movements by establishing the 
typical movement qualities associated with (i) beat 
markers, (ii) cadence markers, (iii) melody accompaniment 
(e.g. tracing, pointing), and (iv) intention to interact with 
others. Other factors such as changes in timbre or dynamics 
may also be relevant. 
Movements associated with expression (for example of a 
specific mood or emotion) should be associated most 
strongly with the third category (melody accompaniment) 
and related to similar movement qualities in 'real life' 
emotional expression. 
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Operational 

hypotheses 

Manual annotation of musical contents, gesture content and 
reference, structure, and interpersonal interaction will be 
combined with audio information and upper-body 
movement data extracted using the OpenPose system. 
Analysis will explore which audio and movement features, 
at which time-scale, predict which annotated factors. The 
aim is to establish predictors for movement salience (i.e. 
when movement indicates a beat, when it indicates 
expressive content), the identity of individual musicians or 
the identity of the musical mode (raga). 
  
We have shown previously using cross-wavelet transform 
analysis how coherence between musicians' movements 
can be a predictor of structural transitions in the music, 
presumably because they pay more mutual attention at 
these moments. 
  
A further possible extension of the programme will be to ask 
participants to respond to musical excerpts with 
instructions such as 'try to trace the melody', and then ask 
for feedback on the examples (e.g. emotional content). This 
would allow us to explore the extent to which expressive 
movement qualities are effectively encoded in the audio. 
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Relationship with the 

objectives of the 

project 

The objective of further developing insights from IEMP to 
explore interactions between different time scales in music 
performance, is set our in Task 1.3. 
  
Sonification of movement forms a part of several strands of 
EnTimeMent. Insights from this work on detecting salience 
of different kinds of performer movement can be applied in 
that work. 
  
By using extended recordings of complex actions and 
interactions in small groups (2-5 people), this work 
provides insights into the development of interpersonal 
interaction and the mutual influence of movement patterns 
at different time scales. 
  
Exploring the 'motor signatures' of specific musical 
repertory items and their typical melodic movements will 
allow this information to be integrated with qualitative 
annotations and interview data about those items 
concerning the imagined movements, characters, moods 
and emotions with which they are associated. This therefore 
allows exploration of the way in which music, movement 
and expression are interrelated. 
  
Indian singers often comment that their gestures should 
look 'natural', and it is often remarked that they can relate 
to physical actions such as drawing a thread, stretching an 
elastic band or transferring a weight. The collaborations in 
this project allow us to explore the relationship of such 
virtual object-manipulation to real actions and object 
manipulations. It also allows us to explore specific 
movement qualities in terms of responses to gravity. For 
instance, do gestures indicate that ascending melodies must 
work against gravity, descending melodies with its help? 
How do beats utilise gravity? 
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Time schedule Extraction of movement data and extension of annotations 
of performances from the IEMP NIR collections: from 
autumn 2019. 
  
Analysis from early 2020. 
  
New recordings from early 2020 according to needs 
determined in the preliminary analysis: e.g MoCap 
recordings for comparison with OpenPose data; recordings 
with additional physiological element; recordings of 
participants responding to music extracts. 
  

Methods Extraction of musicians' movement from video using 
OpenPose system. 
  
Manual annotation of recordings to complement and enrich 
existing annotations. 
  
New methods to be developed using machine learning 
techniques to explore the prediction of annotation 
categories from multimodal data input. 
  
New multimodal data recordings will be made with Indian 
musicians performing extracts from specific ragas (modes) 
and moving in response to music excerpts. Recordings will 
use audio, video, motion capture, physiological markers (e.g. 
ECG, respiration). 
  

Participants Indian musicians (and possibly dancers) 
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Materials Existing materials from the IEMP and linked projects 
(Durham holds a much larger collection from which to draw 
more examples). By autumn 2019 will include 17 raga 
performances, 12 vocal + 5 instrumental. We will add more 
recordings to the annotated collection according to need. 
  
New materials. Musicians may be asked to perform short 
solo pieces in a number of specified North Indian ragas or 
talas. These will be long enough to include the main features 
(e.g. melodic movements, ornaments, typical drum 
patterns) and include moments of initiation, emphasis and 
cadence. 
  
Listeners will be asked to respond to audio recordings of 
extracts from the same recordings. For beat marking 
studies, materials would include metronome clicks/beeps, 
generic stylistic drum loops at different tempi, and examples 
of real music: all of these are easily available. 

Data format WAV audio, MP4 video 
Movement data and annotations CSV 

Experimental 

protocol/procedure 

Performance examples: expert musicians will be asked to 
perform short pieces related to those analysed from 
performances, to allow us to explore the interaction 
between individual movement style and repertoire-specifc 
movement; and between solo and accompanied movement. 
  
Response experiments: individual listeners, some of whom 
will be trained musicians or dancers, will be played audio 
excerpts from the analysed recordings and asked to move 
with the music. Instructions may be either beat-specific 
("Try to indicate the beat of the music") or melody-specific 
("Try to trace the melody with your hands"). 
  

Measures Motion capture (musicians' hands, heads and shoulders), 
video, audio, EMG, respiration, observer perceptual 
judgements and expert annotations. 

Results   
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Descriptive results   

Inference statistics   

Additional results   

Discussion   

  

 

2.1.8 Generative Models for Movement Generation to Facilitate Social 

Interaction 

Title Generative Models for Movement Generation to Facilitate Social 

Interaction 

Type Research Program 

Question of interest Can an avatar (e.g. a projected silhouette of a moving person) driven by 

a generative model learned from observing human examples, express 

emotional states though movements to facilitate interaction with a 

human partner? 

Leaders KTH 

Other ENTIMEMENT 

groups involved 

 

Experiment type (see 

WP2) 

● Task2.1: Prediction in Action execution and observation 
o Task2.2: Prediction in Dyadic Action execution and observation 
o Task2.3: Prediction in Complex Action execution and 

observation 
● None of the above 

Use Case scenario (see 

WP4) 

o Task 4.1: Scenario 1 - Healing with multiple times 
o Task 4.2: Scenario 2 - Chronic musculoskeletal pain 

management with multiple times 
● Task 4.3: Scenario 3 - EntimeMent in dancing with Times 

● None of the above 

Research objectives The main objective is to synthesize movements through a multi-stage 

process based on generative models, to make an avatar react to the 

movements of a human partner and express emotional states. 

Theoretical hypotheses Movements can be generated by generative models to express different 

emotions or other qualities. Such expression can be used to increase the 

degree of social interaction. 

Operational hypotheses A latent space representation of human movement can be learned, 

where some dimensions are forced to capture emotional states. This 

representation can then be used by a generative model to create a 

silhouette of a moving person for which the emotional state can be 

controlled. The movement of the silhouette can be adapted from 

observing the response of the human partner. 
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Relationship with the 

objectives of the project 

This study relates to Task 3.6: Motion generation for social interaction.  

Time schedule  Data collection, method development and analysis will be completed in 

the ENTIMEMENT project. 

Methods TBA 

Participants TBA 

Materials Videos of human dancers and actors expressing different emotional 

states, with corresponding annotated silhouettes. 

Data format RGB video data , binary images of silhouettes 

Experimental 

protocol/procedure 

TBA 

Measures TBA 

Results TBA 

Descriptive results TBA 

Inference statistics TBA 

Additional results TBA 

Discussion TBA 

 

2.1.9 Multi-time ML techniques for movement prediction 

Title Multi-time ML techniques for movement prediction. 

Type Research Program 

Question of interest To investigate ML techniques to determine the dimensionality of 

temporal scales to predict human movement in individual scenarios . 

Leaders KTH, UNIGE 

Other ENTIMEMENT 

groups involved 

 

Experiment type (see 

WP2) 

● Task2.1: Prediction in Action execution and observation 
o Task2.2: Prediction in Dyadic Action execution and observation 
o Task2.3: Prediction in Complex Action execution and 

observation 
● None of the above 

Use Case scenario (see 

WP4) 

o Task 4.1: Scenario 1 - Healing with multiple times 
o Task 4.2: Scenario 2 - Chronic musculoskeletal pain 

management with multiple times 
● Task 4.3: Scenario 3 - EnTimeMent in dancing with Times 

● None of the above 

Research objectives Evaluating Neural Network models to explain EnTimeMent phenomena 

at different time-scales. 

Theoretical hypotheses Improvised movements performed with different qualities like lightness 

or fragility might need different time-scales.   

Operational hypotheses We start from multi-timescales machine learning methods, including 

CW-RNN, MT-LSTM, Autoencoder. 

Relationship with the 

objectives of the project 

This study relates to Task 3.5.  

Time schedule  Start July 2019 to study models and to choose the dataset. 
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Methods CW-RNN, MT-LSTM, Autoencoder 

Participants 12 dancer 

Materials                

Data format VIDEO; IMU 

Experimental 

protocol/procedure 

TBA 

Measures TBA    Lightness and Fragility IMU and video dataset 

Results TBA 

Descriptive results TBA 

Inference statistics TBA 

Additional results TBA 

Discussion TBA 

 

 

2.1.10 Understanding Movement Assessment Timescales 

Title Understanding Movement Assessment Timescales 

Type Research Program 

Question of interest What temporal segments do movement experts (e.g. physios) base their 

assessment of movement data on (e.g., of patients)?, Are different 

temporal scales helpful for different aspects of movement and related 

states?, Can we use this understanding to improve machine learning 

performance? 

Leaders UCL 

Other EnTimeMent 

groups involved 

None 

Experiment Type (see 

WP2) 

☒  Task 2.1: Prediction in Action execution and observation 

☐ Task 2.2: Prediction in Dyadic Action execution and observation 

☐ Task 2.3: Prediction in Complex Action execution and observation 

☐    None of the above 

Use Case Scenario (see 

WP4) 

☐  Task 4.1: Scenario 1 - Healing with multiple times 

☒ Task 4.2: Scenario 2 - Chronic musculoskeletal pain management 

with multiple times 

☐  Task 4.3: Scenario 3 - EntimeMent in dancing with Times 

☐  None of the above 

Research objectives ● To understand how the machine-learning-based attention 

distribution varies with multiple timescales 

● To understand the temporal scales in which clinicians assess 

body movement of people with chronic pain 

Theoretical hypotheses  None 

Operational hypotheses None 

Relationship with the 

objectives of the project 

Aims to contribute: 

● a machine learning architecture for modeling movement at 

multiple timescales 

● to the understanding of human perception of movement qualities 

in relation to pain 
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●  

Time schedule  from June 2019 

Methods Machine Learning; Possibly Video Analysis 

Participants Possibly Physiotherapists 

Materials EmoPain motion capture data 

Data format Motion capture sequences 

Experimental 

protocol/procedure 

● build attention-based machine learning algorithms (e.g. BANet) 

and adapt BANet to timescale-BANet to allow timescale manipulation 

● analyse model attention scores 

● possibly also get physiotherapist analysis of videos for more in 

depth exploration 

Measures TBA 

Results TBA 

Descriptive results TBA 

Inference statistics TBA 

Additional results TBA 

Discussion TBA 

 

2.1.11 Exploring Multiscale Event Segmentation 

Title Exploring Multiscale Event Segmentation 

Type Research program 

Question of interest How can movement data be auto-segmented at multiple timescales?, 

What temporal segments of movement (from multiple timescales) map 

to relevant cognitive/affective experiences?, How can these segments be 

auto-mapped to these labels? 

 

How can we create motivic ('memorable') music (small scale) from 

movement, that sit on the sonification/music segments boundaries?, 

How can we integrate these motives into larger-scale forms?, Based on 

the developed computational segmentation models, can we create 

musical trajectories that reflect action trajectories, such that the motives 

occur at movement segment boundaries?, Can this musical framework 

be used to provide recall cues at a later time? 

Leaders UCL 

Other EnTimeMent 

groups involved 

None 

Experiment Type (see 

WP2) 

☐   Task 2.1: Prediction in Action execution and observation 

☐   Task 2.2: Prediction in Dyadic Action execution and observation 

☐   Task 2.3: Prediction in Complex Action execution and observation 

☒   None of the above 

Use Case Scenario (see 

WP4) 

☐  Task 4.1: Scenario 1 - Healing with multiple times 

☒ Task 4.2: Scenario 2 - Chronic musculoskeletal pain management 

with multiple times 

☐  Task 4.3: Scenario 3 - EntimeMent in dancing with Times 

☐  None of the above 
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Research objectives ● to explore the possibility of auto-segmenting movement data 

into events at multiple time scales, where event boundaries mark 

changes in movement (e.g. a new action, or activity) and/or changes in 

higher level semantics of movement (e.g. cognitive or affective 

experiences) 

● to understand the feasibility of creating motivic music (i.e. small 

scale), from movement, that sit on the sonification/music segments 

boundaries, explore whether these can be developed into larger-scale 

forms to create musical trajectory that reflects action trajectory based on 

the computational segmentation models from machine learning studies, 

such that the motives occur at movement segment boundaries 

Theoretical hypotheses NA 

Operational hypotheses NA 

Relationship with the 

objectives of the project 

Aims to contribute: 

● a machine learning architecture for modeling movement at 

multiple timescales 

● a multi-timescale sonification (framework) 

Time schedule  from January 2020 

Methods Data Collection; Machine Learning; Sonification 

Participants Healthy People; People with Chronic Pain 

Materials EmoPain motion capture data 

Data format Motion capture data 

Experimental 

protocol/procedure 

● build machine learning architecture 

● collect data 

● develop novel sonification approaches to possibly alter 

movement perception and execution 

Measures TBA 

Results TBA 

Descriptive results TBA 

Inference statistics TBA 

Additional results TBA 

Discussion TBA 

 

2.1.12 Prediction of visual perception related brain activity by 

kinematic and postural movement features 

 

Title Prediction of visual perception related brain activity by kinematic 

and postural movement features 

Type Research Program 

Question of interest What features of body movement drive activity in body perception 

related brain regions? 

Leaders UM 
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Other ENTIMEMENT 

groups involved 

UNIGE, ITT-FE 

Experiment type (see WP2) ●         Task2.1: Prediction in Action execution and observation 

o        Task2.2: Prediction in Dyadic Action execution and observation 

o        Task2.3: Prediction in Complex Action execution and 

observation 

o        None of the above 

Use Case scenario (see 

WP4) 

o        Task 4.1: Scenario 1 - Healing with multiple times 

o        Task 4.2: Scenario 2 - Chronic musculoskeletal pain 

management with multiple times 

o        Task 4.3: Scenario 3 - EntimeMent in dancing with Times 

●                   None of the above 

Research objectives To establish a set of body movement features that can explain and 

predict brain signals from regions in the visual processing hierarchy 

responsible for body perception and movement decoding. 

Theoretical hypotheses Humans are able to understand, interpret and predict visual input 

from human motion with apparent ease and high accuracy. It is not 

clear still how the human brain solves this task. The hypothesis is 

that the brain decomposes the visual input at different levels into 

internal representations that encompass spatial and temporal scales 

going from fine to coarse and that these representations are 

maintained in distinct brain regions. 

Operational hypotheses There is not a single brain region responsible for body perception, 

rather a set of hierarchical organized areas cooperate to form an 

understanding of the perceived body and it’s motion. We hypothesize 

that there is a correspondence between the activity of single regions 

and a level of description in terms of computational movement 

features, such that the activity of said regions in response to a visual 

stimulus can be predicted based on a combination of features derived 

from the stimulus. 

Relationship with the 

objectives of the project 

This study provides information on how the human brain tackles the 

task of understanding body movement at different time scales. 

Time schedule Experiment in planning stage. 
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Methods fMRI, computer vision, image and statistical analyses 

Participants Healthy participants 

Materials Human body motion video-clips, behavioural responses, fMRI data 

Data format Matlab and python data structures. 

Experimental 

protocol/procedure 

Participant will be scanned in an MRI while watching the stimuli 

developed for this research program. 

Measures Brain activity as measured by fMRI 

Results TBA 

Descriptive results TBA 

Inference statistics TBA 

Additional results TBA 

Discussion TBA 

 

2.2 Prediction in Dyadic Action execution and observation 

o  

2.2.1 Dyadic coordination of sub-movements 

Title Dyadic coordination of sub-movements 

Type Research Program 

Question of interest Are sub-movements contagious as we know movements are? 

Leaders IIT-FE 

Other ENTIMEMENT 

groups involved 

None 

Experiment type (see 

WP2) 

o Task2.1: Prediction in Action execution and observation 

● Task2.2: Prediction in Dyadic Action execution and observation 
o Task2.3: Prediction in Complex Action execution and 

observation 
o None of the above 

Use Case scenario (see 

WP4) 

o Task 4.1: Scenario 1 - Healing with multiple times 
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o Task 4.2: Scenario 2 - Chronic musculoskeletal pain 

management with multiple times 
o Task 4.3: Scenario 3 - EntimeMent in dancing with Times 

● None of the above 

Research objectives The main objective is to study if dyadic coordination affect sub-

movements expression and coordination 

Theoretical hypotheses Sub-movements in the range of 2-4 Hz have been described to be 

affected by visual feedback during action execution. We intend to verify 

if action coordination contaminate the expression of these 

discontinuities present in (slow) visually-guided actions. 

Operational hypotheses We measure movement kinematics in a finger flexion-extension action 

in a solo and dyadic condition (in phase and anti-phase). We intend to 

verify whether the sub-movement rhythmicity is affected by the 

interaction. 

Relationship with the 

objectives of the project 

Sub-movements have recently been proposed to be mostly generated by 

passive peripheral resonance mechanisms. If we show that behavioural 

coordination produces automatic kinematic contagion across partners, 

we will first demonstrate a cortical origin for sub-movements while at 

the same time we would extend the phenomena of automatic imitation 

to a finer timescale of action execution. 

Time schedule  Data collection ongoing. 

Methods TBA 

Participants 40 healthy participants 

Materials Mocap 

Data format Matlab data structure. 

Experimental 

protocol/procedure 

Each participant is required to produce rhythmic index finger flexion-

extension movements, alone or in coordination with a partner. 

Measures Movement kinematics 

Results TBA 

Descriptive results TBA 

Inference statistics TBA 

Additional results TBA 

Discussion TBA 

 

2.2.2 Motor activations during concurrent action execution and 

observation 

Title Motor cortical inhibition during concurrent action execution (AE) and 

action observation (AO) 

Type Research Program 

Question of interest Are AO effects modulated by concurrent AO? 

Leaders IIT-FE 

Other ENTIMEMENT 

groups involved 

None 

Experiment type (see 

WP2) 

o Task2.1: Prediction in Action execution and observation 

● Task2.2: Prediction in Dyadic Action execution and observation 



 

  
EnTimeMent      D1.1 

 

 

 
June 2019 

30 / 73 

 

 

o Task2.3: Prediction in Complex Action execution and 

observation 
o None of the above 

Use Case scenario (see 

WP4) 

o Task 4.1: Scenario 1 - Healing with multiple times 
o Task 4.2: Scenario 2 - Chronic musculoskeletal pain 

management with multiple times 
o Task 4.3: Scenario 3 - EntimeMent in dancing with Times 

● None of the above 

Research objectives Action Execution (AE) and Action Observation (AO) share an extended 

cortical network of activated areas. During coordinative action these 

processes also overlap in time, potentially giving rise to behavioral 

interference effects. The neurophysiological mechanisms subtending the 

interaction between concurrent AE and AO are substantially unknown. 

Theoretical hypotheses According to the predictive coding hypothesis, other’s action sensory 

outcomes are compared to sensory predictions generated by the same 

hierarchical neural machinery for movement preparation and execution. 

Operational hypotheses We designed four experiments, to elucidate the neurophysiological 

mechanisms subtending the integration of AO and AE. Participants 

were asked perform an action, while observing the same or a different 

action. The dependent measure was the length of the Cortical Silent 

Period (CSP) elicited from the FDS muscle. CSP is a GABAb-mediated 

corticospinal index of inhibition associated with the voluntary motor 

drive and regarded as a marker of response selection. 

Relationship with the 

objectives of the project 

Perceptual discrimination and prediction of other’s actions, may have a 

key role in supporting temporal and spatial interpersonal coordination. 

We may indeed observe other’s actions, to produce complementary 

responses in a turn-taking fashion (e.g., playing tennis) or to 

simultaneously coordinate our own movements with those of others 

(e.g., when moving a heavy object together). However, the cortical 

response to new stimuli is influenced by ongoing activity in the same 

neural substrate. We can thus expect that temporal and spatial overlap of 

the neural processes subtending AE and AO produces functionally 

relevant interaction. 

Time schedule  Data collection finished. Data analyses running. 

Methods TBA 

Participants 64 healthy participants 

Materials Electromyography and TMS. 

Data format Matlab data structure. 

Experimental 

protocol/procedure 

In the main transcranial magnetic stimulation (TMS) study, participants 

were asked to keep the same isometric opened or closed hand posture, 

while observing an intransitive hand opening or closing action. 

Measures CSPs 

Results TBA 

Descriptive results TBA 

Inference statistics TBA 

Additional results TBA 

Discussion TBA 
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2.2.3 Anticipatory postural adjustments (APA) during joint action 

coordination 

Title Anticipatory postural adjustments (APA) during joint action 

coordination 

Type Experiment 

Question of interest Are APAs triggered during dyadic action? 

Leaders IIT-FE 

Other ENTIMEMENT 

groups involved 

None 

Experiment type (see 

WP2) 

o Task2.1: Prediction in Action execution and observation 

● Task2.2: Prediction in Dyadic Action execution and observation 
o Task2.3: Prediction in Complex Action execution and 

observation 
o None of the above 

Use Case scenario (see 

WP4) 

o Task 4.1: Scenario 1 - Healing with multiple times 
o Task 4.2: Scenario 2 - Chronic musculoskeletal pain 

management with multiple times 
o Task 4.3: Scenario 3 - EntimeMent in dancing with Times 

● None of the above 

Research objectives It is recurrently claimed that human effortlessly detect others’ hidden 

mental state by simply observing their movements and transforming the 

visual input into motor knowledge to predict their behavior. Using a 

classical paradigm quantifying motor predictions we tested the role of 

vision feedback during a reach and load-lifting task performed either 

alone, or with the help of a partner. 

Theoretical hypotheses We intend to show whether during dyadic interaction, in addition to 

self-motor representations, individuals adapt the cooperation by 

continuously integrating sensory signals coming from various sources. 

Operational hypotheses Wrist flexor and extensors muscle activities were recorded on the 

supporting hand. Early muscle changes preventing limb instabilities 

when participants performed the task by themselves, revealed the 

contribution of the visual input in postural anticipation. When the 

partner performed the unloading, a condition mimicking a split-brain 

situation, motor prediction followed a pattern evolving along the task 

course and gaining from the integration of the successive somatosensory 

feedbacks. 

Relationship with the 

objectives of the project 

Perceptual discrimination and prediction of other’s actions, may have a 

key role in supporting temporal and spatial interpersonal coordination. 

Here we intend to verify whether visual action prediction affect low 

level control parameters such as the one instantiated by APAs and thus 

related to maintaining postural equilibrium. 

Time schedule  Data collection finished. Data analyses running. 

Methods TBA 

Participants 34 healthy participants 

Materials Electromyography 
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Data format Matlab data structure. 

Experimental 

protocol/procedure 

The two participants sat face-to-face separated. In each couple, one 

participant was designated as the “Carrier”, and the other as the 

“Partner”. In a first experimental condition, the carrier performed the 

task by her/himself (Self condition) by holding the tray with his left 

hand while reaching, grasping and lifting the object with her/his right 

hand. In a second experimental condition, the partner had to reach, 

grasp and lift the carrier’s object with his right hand (Joint condition). 

These two conditions were carried out with the carrier having either the 

eyes open (EO) or closed (EC). 

Measures Carrier’s arm flexor/extensor EMG onset with respect to object touch 

and lift. 

Results TBA 

Descriptive results TBA 

Inference statistics TBA 

Additional results TBA 

Discussion TBA 

 

2.2.4 Representing Human Movement in Dyadic Actions over Multiple 

Time Scales 

Title Representing Human Movement in Dyadic Actions over Multiple Time 

Scales 

Type Research program 

Question of interest Whether the same underlying machine learning framework can be used 

to represent movement in dyadic actions for prediction of properties 

over multiple time scales. 

Leaders KTH 

Other ENTIMEMENT 

groups involved 

 

Experiment type (see 

WP2) 

o Task2.1: Prediction in Action execution and observation 

● Task2.2: Prediction in Dyadic Action execution and observation 
o Task2.3: Prediction in Complex Action execution and 

observation 
o None of the above 

Use Case scenario (see 

WP4) 

o Task 4.1: Scenario 1 - Healing with multiple times 
o Task 4.2: Scenario 2 - Chronic musculoskeletal pain 

management with multiple times 
o Task 4.3: Scenario 3 - EntimeMent in dancing with Times 

● None of the above 

Research objectives The objective is to study representations of movement in dyadic actions 

that are agnostic to the time scales of the properties to be predicted, 

which allows the same representation to be used for properties at 

different time scales. The representations are to be tested for analysis of 

one-on-one basketball with two players interacting with each other.  

Theoretical hypotheses Movement can be represented in a multi-scale fashion over time. Such a 

representation can be used to infer properties without a preselected time 
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scale for prediction. In one-on-one basketball, the representation can be 

used to predict both immediate next actions, short-time intentions, and 

overall skill levels. 

Operational hypotheses Nested or stacked LSTM (long short-term memory) networks can 

represent movement over various time scales in parallel. Such networks 

can then be combined to include multiple actors and be used to infer 

properties that depend on all actors, such as the interplay between 

basketball players. 

Relationship with the 

objectives of the project 

This study relates to Task 3.4: short-term gesture prediction and Task 

3.5: prediction at multiple time scales. It will explore movement 

analysis and prediction between multiple agents over multiple time 

scales.  

Time schedule  Data collection, method development and analysis will be completed in 

the ENTIMEMENT project. 

Methods TBA 

Participants TBA 

Materials One-on-one basketball materials: In one-on-one basketball, one of the 

two players is the defender, and the other is the attacker. By analyzing 

the movements between the two players and the state of the ball, over 

short-term horizons, we could predict the player's movements, and over 

long-term horizons, player styles and the results of the battle. 

Data format RGB video and IMU data  

Experimental 

protocol/procedure 

TBA 

Measures Motion Capture:  

3. Player and ball positions recorded by video cameras 

4. Full body movements recorded using IMU suits 

Results TBA 

Descriptive results TBA 

Inference statistics TBA 

Additional results TBA 

Discussion TBA 

 

2.2.5 New-generation of radar sensors to detect mid-layer expressive 

gestures 

Title New-generation of radar sensors to detect mid-layer expressive gestures 

Type Research Program 

Question of interest Explore the feasibility of a new radar-based technology for motion 

capture analysis 

Leaders IIT-FE, UNIGEn UM-EuroMov 

Other ENTIMEMENT 

groups involved 

None 

Experiment type (see 

WP2) 

o Task2.1: Prediction in Action execution and observation 

● Task2.2: Prediction in Dyadic Action execution and observation 
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● Task2.3: Prediction in Complex Action execution and 

observation 
o None of the above 

Use Case scenario (see 

WP4) 

o Task 4.1: Scenario 1 - Healing with multiple times 
o Task 4.2: Scenario 2 - Chronic musculoskeletal pain 

management with multiple times 
o Task 4.3: Scenario 3 - EntimeMent in dancing with Times 

● None of the above 

Research objectives o are there relationships between the two mocap technologies? 
o Is there relevant new information in the radar technology that is 

complementary to the one of classical optoelectronic one?  

Theoretical hypotheses Classical mocap is very accurate in time and space. However, capturing 

higher-level features require a significant amount of work and yet no 

satisfactory solution to extract expressive features. The hypothesis is 

that these mid-layer features are best captured by technologies 

considering the body movement as whole rather that a set discrete 

segments moving in space. 

Operational hypotheses Radar sensors (SR) are low-power and low-complexity solution for 

accurate detection and tracking of moving targets. Recently, ultra-

wideband (UWB) SR have gained interest owing to their ability to 

resolve multipaths and penetrate obstacles. It has been shown that UWB 

SRs can provide submeter tracking accuracy even in harsh indoor 

environments. Based on this fact, we will record, side by side, SR data 

and classical motion capture data in scenarios that are relevant for the 

project. 

Relationship with the 

objectives of the project 

This task will allow us to verify the potential of a whole new technology 

to extract complementary movement info on a different time and spatial 

scale. 

Time schedule  Start of tests: M10 

Methods Multimodal recording of SR and mocap 

Participants At least 10 couples 

Materials SR and mocap 

Data format Matlab data structure. 

Experimental 

protocol/procedure 

Couples will have to pass each other objects of the same size but 

different weight. They will not know the weight in advance. In a second 

condition, they will be asked to pass the same objects by acting out 

different emotions (e.g. happiness, sadness etc.) 

Measures We will record both data set and will test whether SR can differentiate 

passing actions depending on weight of the object or the emotion. 

Results TBA 

Descriptive results TBA 

Inference statistics TBA 

Additional results TBA 

Discussion TBA 
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2.2.6 Duomotion (Duo-Emotion) 

Title Duomotion (Duo-Emotion) 

Type Research Program 

Question of interest Several studies have focused on dyadic synchronization. Most of them 

have shown what are the biomechanics sources of synchronization. 

However psychological aspects also need to be taken into account in the 

motor interaction. For instance, if one partner is sad or happy it is 

possible that i) the quality of the synchronization would be impacted 

and ii) the IMS of the dyad temporarily changed at multiple time scales. 

Finally, iii) GMS of each emotion could be revealed.  

Leaders UM-EuroMov           

Other EnTimeMent 

groups involved 

UNIGE ; IIT,           

Experiment type (see 

WP2) 

o Task2.1: Prediction in Action execution and observation 

● Task2.2: Prediction in Dyadic Action execution and observation 

● Task2.3: Prediction in Complex Action execution and 

observation 
o None of the above 

Use Case scenario (see 

WP4) 

o Task 4.1: Scenario 1 - Healing with multiple times 
o Task 4.2: Scenario 2 - Chronic musculoskeletal pain 

management with multiple times 
o Task 4.3: Scenario 3 - EntimeMent in dancing with Times 
o None of the above 

Referent scenario EnTimeMent Dancing with Time 

Research objectives 1. Design dyadic synchronization experiments to manipulate emotional 

and other psychological qualities among participants in motor 

interaction 

2. Design techniques to analyse the impact of emotion in IMS and GMS 

3. Design techniques to analyse multiple time scales for different motor 

and psychological aspects 

Theoretical hypotheses In any motor interactions psychological aspects (like emotion) are often 

forgotten. Emotion, personality traits, motivation… are sources of 

shaping the characteristics of dyadic synchronization. The hypotheses 

are 1) that different emotions modify partners’ IMS. Positive emotions 

could enhance the empathy within the dyad. The two IMS would then 

be closer. On the other hand, negative emotions would separate the two 

IMS. 2) Same emotions would bring together different IMS so that a 

GMS of sadness, or a GMS of happiness for instance would raise. 3) 

The multiple time scales analysis would show different qualities of IMS 

at different temporal scales. 

Operational hypotheses  IMS can be quantified using the similarity space (Slowinski et al., 

2016), with incorporation of intentional and emotional manipulations. 

GMS will be under the influence of emotional differences between 

IMS, following the prediction that an optimum level of similarity 
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(proximity in the similarity space) will favour the formation of a GMS, 

and synchronized performance. In addition, it is hypothesized that 

movements embedded with emotion should exist across different 

temporal scales. Scale-space techniques can be used to address motion 

segmentation and dyadic motion synchronization.  

Relationship with the 

objectives of the project 

Duomotion is part of WP2 and will lead to scenario 3. 

Time schedule  Finalize protocols with partners in July 2019 (JAM meeting) 

Hiring of the Duomotion PhD student in September 2019 

Finalizing techniques and data recording end of 2019 – beginning 2020 

Multimodal recording of IMS and GMS at UM-EuroMov spring 2020 

Complementary Mutimodal recordings at UNIGE in spring-summer 

2020 

Methods Participants will be facing pre-recorded video of actors improvising 

upper-arm movements under different emotional states. The participants 

would have to improvise front of the actor on that video. 

Participants 20 participants and 2 actors (male and female)  

Materials Large screen and pre-recorded video. Motion capture through Vicon 

system 

Data format Synchronized movements from video and upper-arm makers. 

Questionnaires of emotional state before and after each condition 

Experimental 

protocol/procedure 

Different kinds of emotion (sadness, anger, happiness, fear, disgust, 

neutral) will be exposed on video. Participants will improvise along 

with the video displayed. 

Measures Measures of frequency and phase synchronization of the dyads. Use of 

artificial intelligence techniques to extract and refine IMS and explore 

whether there are GMS based on emotion induced. 

Measures of the emotional state of each participant and comparison of 

the impact of emotion on synchronization and IMS. 

Results See Hypotheses 

Descriptive results Time series, box plots, histograms 

Inference statistics Parametric and non-parametric mixed models 

Additional results TBA 

Discussion Results will be discussed in in terms of:  

● Emotional effect 

● Similarity effect 

● Unintended synchronization effect 

 

2.2.7 The various Fast and slow of synchronization: A dynamical model 

and cultural comparison approach 

Title The various Fast and slow of synchronization: A dynamical model and 

cultural comparison approach 

Type Research Program 

Question of interest Development and learning in interaction with the environment, 

including repeated exposure and interaction with patterns determined by 

culture, constitute an example of very slow changes, on an individual’s 
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lifespan scale, that influence rhythmic skills (Jacoby & McDermott, 

2017). Along this line of thinking, we aim at analysing how culture 

pervades across general rhythm skills and specifically determine 

elementary synchronization. Our first entry point was the comparison of 

Indian and French participants. Data collected this spring, including 15 

French and 15 Indian participants, show interesting differences in the 

way to synchronize to a simple beat (Lagarde et al., in preparation). The 

data collected points at analysing further in follow ups two time scales 

of adaptation: Frequency and phase. For definitions and analysis, the 

approach uses the theoretical framework of coordination dynamics. The 

basic model is a non-linear model of a self-sustained oscillator (l.h.s.), 

forced by a periodic function and random noise (r.h.s.): 

   Eq. 1 

 

It is well known that this model of synchronization obeys the so- called 

theory of Arnold’s tongues (Kelso & DeGuzman, 1988), enabling 

identifying a priori the determiners of synchronization. From this 

equation relative phase dynamics can be obtained, bistable dynamics of 

two stable attractors, synchronization and syncopation, resp. in phase 

and antiphase (Kelso et al., 1990; Eq. 2): 

  Eq.2 

 

Here we study exclusively synchronization, therefore the bistable 

equation Eq. 2 can be linearized to obtain further meaningful 

observables. 

We ran a first experiment (see below), and plan a follow-up examining 

the hypothesis that the behavioural difference observed between the 

Indians and French synchronization comes from sensorimotor 

adjustments evolving at two time scales, corresponding in short to 

period or phase adjustments. We aim at i) making this assumption more 

explicit based on available modelling, and ii) testing explicit predictions 

from the theory, iii) isolate essential aspects of cultural factors that 

determine those differences. 

Leaders      Euromov-UM 

Other EnTimeMent 

groups involved 

DU     h      

Experiment type (see 

WP2) 

o Task2.1: Prediction in Action execution and observation 

● Task2.2: Prediction in Dyadic Action execution and observation 

● Task2.3: Prediction in Complex Action execution and 

observation 
o None of the above 

Use Case scenario (see 

WP4) 

o Task 4.1: Scenario 1 - Healing with multiple times 
o Task 4.2: Scenario 2 - Chronic musculoskeletal pain 

management with multiple times 
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o Task 4.3: Scenario 3 - EntimeMent in dancing with Times 
o None of the above 

Referent scenario Basic single finger tapping or in follow ups index free oscillation, or 

vocal, sensorimotor synchronization to a beat. Using phasic stimuli 

perturbations to probe time scales of dynamics, that is, relaxation to 

attractors.  

The evolution of the scenario may involve using stimuli abstracted from 

rhythmic patterns typical of Indian music to investigate western 

participants synchronization to such structures. The latter calls naturally 

for a collaboration to identify the proper rhythmical patterns. 

Research objectives Understanding the two time scales of simple synchronization, to seek a 

dynamical modelling of sensorimotor synchronization considering at 

least two time scales instead of a unique time scale, as currently the case 

in the classical modelling. Furthermore, a better account of timing 

function in humans by encompassing cultural variants and invariants. 

Theoretical hypotheses There are several ways to achieve sensorimotor synchronization, and 

cultural comparison can provide further evidence of this variety, with 

consequences onto modelling and neuroscience assumptions. The first 

study was exploratory, differences in global capacity of synchronization 

were sought, as difference in the way synchronization was performed, 

considering the parameters known to determine this capacity (Arnold 

tongues theory). We sought to design a battery of complementary tests 

to estimate such dynamical parameters on an individual basis. 

Operational hypotheses A difference in global synchronization capacity, indexed by its maximal 

rate limits.  The relative roles of the key parameters determining the 

quality of elementary synchronization differ between French and Indian 

participants.  

Relationship with the 

objectives of the project 

Contributing to the understanding of the role of multiple time scales in 

sensorimotor synchronization. 

Time schedule  Started in march, the new data collection is planned for this fall. 

Methods In the first experiment, the task was to synchronize tapping to a periodic 

sound beat. The frequency of the beat was increased by .3Hz, in 

plateaus every 15 beats, from 1 to 6.1Hz. Complementary tests were 

performed to estimate individual’s parameters in the frame of Arnold’s 

tongues theory. A second experiment is planned which will consist in a 

similar synchronizing task, this time with constant pacing frequency and 

random phasic perturbation of stimuli onset. 

Additionally, a group of participants with a higher level of musical 

experience, in Indians and French participants, in their respective local 

music domains, will be included. Inclusion of participants from other 

cultures is envisioned. 

Participants For the first experiment Indians and French participants (N = 15 in each 

group, 11 men and 4 women, age 22 to 45), all right handed, recruited in 

Montpellier, were matched in pairs to control for education, age, and 

musical, or dance, or sports experience. Indians recruited had left India 

less than 2 years before the experiment,  their mother tongue was 

Indian, their second language English, and they were not fluent in 

French. 
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Materials A goniometer was used to collect the index finger position 

(metacarpophalangeal angle), connected to an A to D card, also used to 

collect stimuli. A second PC and the sound D to A card  was used to 

display the stimuli. 

Data format .text files exclusively 

Experimental 

protocol/procedure 

The task was to synchronize as best as possible a tap on the table of the 

index finger with a sound. 3 trials were completed. The frequency of the 

beat was increased every 15 stimuli by 0.3 Hz. The range of the pacing 

frequency went from 1 to 6.1 Hz. 

Measures The relative phase between position and beats was estimated. Stationary 

and transients (beginning of each plateau) were separately analysed. The 

angular mean and dispersion were estimated. The time derivative of the 

relative phase was used to estimate the frequency difference between 

movement and stimuli, then to compute the total time spent 

synchronized (Dwell time, using a threshold epsilon for tolerance of 

frequency difference) : 

Eq. 3 

 

Results There was no difference between the global synchronization capacity 

(dwell times) of the two groups. The maximal rates at which French and 

Indian participants were able to synchronize were comparable. However 

Descriptive results  

 

 

Figure 1. Histograms of relative phases for all the plateaus for French 

and Indian participants (N = 9720 values; bin size 0.1 radians). The 

lower panel shows the cumulative distributions; a Kolmogorov-Smirnov 

test on the maximal difference between cumulative distributions 



 

  
EnTimeMent      D1.1 

 

 

 
June 2019 

40 / 73 

 

 

confirms a significant difference between the distributions of the two 

groups.  

Inference statistics Non parametric, including permutation procedures, on distributions of 

relative phase, dwell times, estimate of individual’s dynamical 

parameters, and relations among those parameters and synchronization 

performances. 

Additional results The analysis of the relation between of individual’s parameters and 

global synchronization capacity is under way 

Discussion Results will be discussed in in terms of:  
o Influence of cultural origin onto relative phase dynamics, 

including stability and capacity limits. 
o Relative roles of determiners of synchronization predicted by the 

theory. 
o Differences in individual’s dynamical parameters. 

 

2.2.8 Understanding Entrainment Timescales During Physical Activity 

Title Understanding Entrainment Timescales During Physical Activity 

Type Research program 

Question of interest To what extent does a person’s movement behaviour change during the 

performance of exercises based on a present other’s (e.g. physio, or 

instructor) performance of the same exercise at the same time or his/her 

verbal instructions/feedback?, To what extent can two musical 

sonifications generated by these two be synchronised to encourage 

improved movement quality through sonically-supported entrainment? 

Leaders UCL 

Other EnTimeMent 

groups involved 

None 

Experiment Type (see 

WP2) 

☐ Task 2.1: Prediction in Action execution and observation 

☒ Task 2.2: Prediction in Dyadic Action execution and observation 

☐ Task 2.3: Prediction in Complex Action execution and observation 

☐ None of the above 

Use Case Scenario (see 

WP4) 

☐  Task 4.1: Scenario 1 - Healing with multiple times 

☐ Task 4.2: Scenario 2 - Chronic musculoskeletal pain management with 

multiple times 

☐  Task 4.3: Scenario 3 - EntimeMent in dancing with Times 

☒  None of the above 

Research objectives ● to understand how and at what time scales entrainment may 

occur during dyadic physical activity 

● to understand if sonification can induce/promote entrainment 

Theoretical hypotheses NA 

Operational hypotheses NA 

Relationship with the 

objectives of the project 

Aims to contribute understanding of entrainment in the context of 

physical activity performance 
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Time schedule  from December 2020 

Methods Data Collection; Analysis 

Participants People with Chronic Pain, Healthy People 

Materials Notch sensor kit, possibly Empatica sensor, video cameras and tripods, 

self-report materials, analysis software 

Data format None 

Experimental 

protocol/procedure 

●  develop sonification 
●  collect data 
● analysis data 

Measures TBA 

Results TBA 

Descriptive results TBA 

Inference statistics TBA 

Additional results TBA 

Discussion TBA 

 

2.3 Prediction in Complex Action execution and observation 

2.3.1 Orchestra violin sections and conductor 

Title Orchestra violin sections and conductor  

Type Experiment 

Question of interest Role of visual communication in shaping network dynamics across 

musicians and conductors 

Leaders IIT-FE -UNIGE 

Other ENTIMEMENT 

groups involved 

None 

Experiment type (see 

WP2) 

o Task2.1: Prediction in Action execution and observation 
o Task2.2: Prediction in Dyadic Action execution and observation 

● Task2.3: Prediction in Complex Action execution and 

observation 
o None of the above 

Use Case scenario (see 

WP4) 

o Task 4.1: Scenario 1 - Healing with multiple times 
o Task 4.2: Scenario 2 - Chronic musculoskeletal pain 

management with multiple times 
o Task 4.3: Scenario 3 - EntimeMent in dancing with Times 

● None of the above 

Research objectives The main objective is to study non-verbal communication among 

experts in sensori-motor synchronization such as orchestra musicians. 

Measures of synchronization and leadership. 
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Theoretical hypotheses Movement kinematics can be used to extract the dynamical pattern of 

communication among orchestra players and conductors 

Operational hypotheses Acceleration profiles of different body parts movements can be used to 

compute causal influences (Granger analysis), among musicians and 

from conductor to musicians.  

Relationship with the 

objectives of the project 

This experiment will test the possibility that sensorimotor 

communication flows during complex multi-agent interaction along 

different channels of communication, at different time scales. 

Time schedule  Multimodal data recordings with orchestra of Music Conservatory of 

Genoa and 3 different conductors at Casa Paganini was conducted 

during the project SIEMPRE. Data analysis was completed in the 

ENTIMEMENT project. 

Methods  

Participants 3 conductors, 8 violinists and 10 instrumentist 

Materials Music materials: 

Ouverture of "Signor Bruschino", Rossini 

Vivaldiana, terzo movimento, Malipiero 

Data format SIEMPRE multimodal platform data 

Experimental 

protocol/procedure 

The three conductors and the orchestra executed the two pieces in a 

standard and two additional experimental conditions. The standard 

condition consisted in a normal orchestra scenario with musicians 

placed in a conventional spatial position. The two other conditions 

consisted in playing the pieces with the first violin (first row) section 

facing the second section (second row) thus avoiding eye contact with 

the conductor. 

Measures Motion capture : 

- violinists’ bow and head position 

- conductors’s head, left hand and baton 

Results We described the network of sensorimotor communication along two 

different channels of communication. The first based on instrumental 

movements (arm) and the other based on ancillary movements (head). 

Each of them was differently affected by the perturbation and thus 

empirically demonstrating their independence. 

Descriptive results See: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458170/ 

Inference statistics See: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458170/ 

Additional results See: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458170/ 

Discussion See: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458170/ 

 

 

2.3.2 Dancing with Sync 

Title Dancing with Sync 

Type Experiment 

Question of interest In Dancing with sync, the existence of signatures of dancing expertise 

during voluntary group synchronization will be evaluated in a laboratory 
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context, as a pre-requisite to capture the ability of dancers to maintain 

voluntary synchronization despite transient loss of perceptual contact 

Leaders UM-EuroMov 

Other EnTimeMent groups 

involved 

 

Experiment type (see WP2) ● Task2.1: Prediction in Action execution and observation 
o Task2.2: Prediction in Dyadic Action execution and observation 

● Task2.3: Prediction in Complex Action execution and 

observation 
o None of the above 

Use Case scenario (see 

WP4) 

o Task 4.1: Scenario 1 - Healing with multiple times 
o Task 4.2: Scenario 2 - Chronic musculoskeletal pain 

management with multiple times 
o Task 4.3: Scenario 3 - EntimeMent in dancing with Times 
o None of the above 

Referent scenario EntiMement in dancing with Times 

Research objectives 1. Test a new pendulum-based apparatus recently developed in the 

EnTimMent context to manipulate various qualities of group 

synchronization patterns at multiple temporal scales: individual 

characteristics including dancing expertise, type and duration of 

perceptual coupling, social memory, spatial organization 

2. Develop specific metrics to precisely capture group synchronization 

regimes 

3. Evaluate effect of dancing expertise, social memory, spatial 

configuration, and loss of perceptual coupling on synchronization 

regimes 

Theoretical hypotheses Expertise across multiple temporal scales related to learning (from 

novices to experts) modulates perceptuo-motor group synchronization 

Operational hypotheses  Experts reaches group synchronization faster, maintain synchronization 

during loss of perceptual contact longer, and are less affected by 

changing spatial organization then novices 

Relationship with the 

objectives of the project 

Dancing with sync is at the intersection between WP1 (theoretical 

models) and WP2 (experiments) and will lead to scenario 3. 

Time schedule  Develop apparatus, method, variables, analyses, and protocols in spring 

2019 

Data recording in Spring and Summer 2019 with non-dancers and 

dancers with master students enrolled on the project 

Dissemination in Fall 2019 

Methods Dancing in Sync will cover two experiments. In Experiment 1, 7 seated 

participants in different topologies (graphs) will synchronize pendulums 

oscillating at various similar or dissimilar frequencies. In Experiment 2, 

similarity will be tested with different groups of experts. 

Participants  2 groups of 7 participants (Experiment 1) and 4 groups of 7 participants 

(2 groups of novices, 2 groups of experts) 
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Materials  7 pendulums with adaptable oscillating frequency 

(mass and mass distribution), with optical encoders for type 

1 experiments. 

 

Data format Synchronized analogue signals from potentiometers for type 1 

experiment 

Experimental 

protocol/procedure 

Experiment 1. Three manipulations will be introduced: Topologies 

(complete, path, ring, star graphs), frequency similarity (homogenous, 

identical, different), and perceptual coupling (present, temporarily 

absent) 

Measures Measures of frequency and phase synchronization, at group and dyadic 

levels, individual contribution to group synchronization, leadership 

measures, use of artificial intelligence techniques to extract and refine 

IMS and GMS. 

Results See Hypotheses 

Descriptive results Time series, box plots, histograms 

Inference statistics Parametric and non-parametric mixed models 

Additional results TBA 

Discussion Results will be discussed in in terms of:  

● Similarity effect 

● Expertise effect 

● Topology effect 

● Perceptual effect 

 

 

2.3.3 Time-to-Sync 

Title Time-to-Sync 

Type Research Program 

Question of interest In Time-to-Sync, the existence of multiple channels of perceptuomotor 

communication will be explored during natural and laboratory-based 

group synchronisation situations. Individual Motor Signatures (IMS) 

and group signatures (GMS) will be evaluated and modelled, and their 

dynamics at multiple time scales will be investigated to capture 

affective, emotional, and intentional qualities. 

Leaders UM-EuroMov (Benoît Bardy) 

Other EnTimeMent 

groups involved 

UNIGE ; IIT; WSU 

Experiment type (see 

WP2) 

● Task2.1: Prediction in Action execution and observation 
o Task2.2: Prediction in Dyadic Action execution and observation 

● Task2.3: Prediction in Complex Action execution and 

observation 
o None of the above 

Use Case scenario (see 

WP4) 

o Task 4.1: Scenario 1 - Healing with multiple times 
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o Task 4.2: Scenario 2 - Chronic musculoskeletal pain 

management with multiple times 
o Task 4.3: Scenario 3 - EntimeMent in dancing with Times 

● None of the above 

Referent scenario EntiMement in dancing with Times 

Research objectives 1. Design group synchronization experiments to manipulate intentional 

and emotional qualities among participants 

2. Develop techniques to identify IMS and GMS 

3. Develop AI-based techniques to recognize intentional and emotional 

qualities during group interaction. 

Theoretical hypotheses Perceptuomotor group synchronisation is an essential feature of human 

activities. Examples include hands clapping in an audience, walking in a 

crowd, music playing, sport and dance. Achieving synchronisation in 

the group involves shared intention and perceptual interaction, but also 

depend on how individual motor signatures (IMS) — specific blueprints 

of human individuals — are assembled together to form a specific group 

motor signature (GMS). Theoretical hypotheses are that (i) IMS and 

GMS incorporate spontaneous intentional and emotional qualities, that 

(ii) assembling participants with different IMS affect GMS and group 

sensori-motor stability and performance, and that (iii) aforementioned 

qualities exist at different, and/or across, temporal scales. 

Operational hypotheses  IMS can be quantified using the similarity space (Slowinski et al., 

2016), with incorporation of intentional and emotional manipulations. 

GMS will be under the influence of emotional differences between IMS, 

following the prediction that an optimum level of similarity (proximity 

in the similarity space) will favour the formation of a GMS, and 

synchronized performance. In addition, it is hypothesized that gesture 

qualities (emotional and intentional components) will exist across 

different temporal scales 

Relationship with the 

objectives of the project 

Time-to-sync is part of WP2 and will lead to scenario 3. 

Time schedule  Finalize protocols with partners in July 2019 (JAM meeting) 

Hiring of the Time-to-Sync PhD student in September 2019 

Finalizing techniques and data recording end of 2019 – beginning 2020 

Multimodal recording of IMS and GMS at UM-EuroMov spring 2020 

Complementary Mutimodal recordings at UNIGE in spring-summer 

2020 

Methods Time-to-Sync will involve two complementary type of experiments. 

Type 1 will involve participants in different topologies (graphs) to 

synchronize pendulums oscillating at various frequencies.      

Type 2 will involve participants also in different topologies 

synchronizing part of their body (e.g., head or arm) in more naturalistic 

circumstances. 

Participants  Multiple groups of 7 participants 
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Materials 7 pendulums with adaptable oscillating frequency (mass and mass 

distribution), with optical encoders for type 1 experiments.      

Large mocap room (NEXUS VICON and Qualisys, extended for 

multimodal recordings) for Type 2  experiments  

Data format Synchronized analogue signals from potentiometers for type 1 

experiment 

Mocap and multimodal synchronized data for type 2 experiments 

Experimental 

protocol/procedure 

Three manipulations will be introduced for each type: Topologies 

(complete, path, ring, star graphs), intention (voluntary synchronisation 

vs. spontaneous synchronization) and emotion (e.g. 6 categorical 

emotion model). 

Measures Measures of frequency and phase synchronization, at group and dyadic 

levels, individual contribution to group synchronization, leadership 

measures, use of artificial intelligence techniques to extract and refine 

IMS and GMS. 

Results See Hypotheses 

Descriptive results Time series, box plots, histograms 

Inference statistics Parametric and non-parametric mixed models 

Additional results TBA 

Discussion Results will be discussed in in terms of:  

● IMS and contribution to GMS 

● Signatures of emotions across temporal scales 

● Signatures of intention across temporal scales 

 

2.3.4 Multiscale motor signatures in individual and joint music 

performance 

Title Multiscale motor signatures in individual and joint music performance  

Type Research program 

Question of interest Role of similarity in motor signatures at multiple timescales in 

determining compatibility of action styles in musical performers 

Leaders UNIGE;      UM-EuroMov;      DU;      WSU 

Other ENTIMEMENT 

groups involved 

 

Experiment type (see 

WP2) 

o Task2.1: Prediction in Action execution and observation 
o Task2.2: Prediction in Dyadic Action execution and observation 

● Task2.3: Prediction in Complex Action execution and 

observation 
o None of the above 

Use Case scenario (see 

WP4) 

o Task 4.1: Scenario 1 - Healing with multiple times 
o Task 4.2: Scenario 2 - Chronic musculoskeletal pain 

management with multiple times 
o Task 4.3: Scenario 3 - EntimeMent in dancing with Times 

● None of the above 

Research objectives To develop techniques for analysing motor signatures from musicians’ 

movement kinematics at multiple timescales and to investigate the role 
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of similarity in these signatures in determining compatibility in action 

style during joint musical performance  

Theoretical hypotheses Similarity in motor signatures at multiple timescales will determine the 

quality of interpersonal coordination during joint music performance by 

enhancing compatibility in action style 

Operational hypotheses Measures of motor signatures based on multi-dimensional scaling 

techniques applied to movement velocities for different body segments 

moving at different timescales (e.g., arm movement vs body sway) will 

explain variance in coordination across instrument duos. 

Relationship with the 

objectives of the project 

This series of experiments will investigate how information at multiple 

timescales explains predictive processes in complex joint action 

execution and observation in terms of compatibility of motor signatures 

and action styles. 

Time schedule  Develop analytical techniques with existing data from the TELMI 

corpus of violin performances and other existing datasets, and in parallel 

build a repository of multimodal recordings of group musical 

performance. 

Methods Motor signature analysis and exploring with machine learning 

techniques 

Synchronization techniques 

Multimodal recording with motion capture, audio, video, EMG, and 

respiration. 

Participants Expert violin performers and possible other instrumentalists; 

Musicologists for the selection of music fragments used in the 

experiment; observers for perceptual studies 

Materials Music materials: 

From TELMI corpus and possible ethnomusicological corpus. Duo and 

small ensemble musical pieces, including newly composed pieces 

designed to elicit particular kinds of interaction between performers. 

Data format SIEMPRE multimodal platform data 

Experimental 

protocol/procedure 

Motor signatures will be analysed based on movement velocities for 

different body segments moving at different timescales (e.g., arm 

movement vs body sway) using multi-dimensional scaling techniques. 

Machine learning techniques will be employed to explore the 

relationship between the motor signatures at multiple timescales. 

Objective measures of interpersonal coordination in joint music 

performance will be computed in multiple modalities (e.g., audio, video, 

mocap) and at different timescales. Subjective measures of coordination 

based on observer perceptual judgements will be collected.  Measures of 

multi-timescale motor signature similarity will be used to predict 

objective and subjective measures of coordination. 

Measures Motion capture, video, audio, EMG, respiration, observer perceptual 

judgements 

Results Consolidation of techniques and implementation of software modules, 

which can be used in project Scenarios 

Descriptive results TBA 

Inference statistics TBA 
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Additional results TBA 

Discussion TBA 

2.3.5 Tracking the leader: gaze behaviour in group interactions 

Title Tracking the leader: gaze behaviour in group interactions 

Type Experiment 

Question of interest Can social gaze behaviour reveal the leader during real-world group 

interactions? 

Leaders IIT 

Other ENTIMEMENT 

groups involved 

None 

Experiment type (see 

WP2) 

o Task2.1: Prediction in Action execution and observation 
o Task2.2: Prediction in Dyadic Action execution and observation 

● Task2.3: Prediction in Complex Action execution and 

observation 
o None of the above 

Use Case scenario (see 

WP4) 

o Task 4.1: Scenario 1 - Healing with multiple times 
o Task 4.2: Scenario 2 - Chronic musculoskeletal pain 

management with multiple times 
o Task 4.3: Scenario 3 - EntimeMent in dancing with Times 

● None of the above 

Research objectives Stereotypical thinking links leadership to prolonged gazing towards 

leaders (Hall et al., 2005) and longer mutual gazing in response to 

interactions initiated by leaders (Carney et al., 2005). However, 

evidence for an actual relationship between leadership and social gaze 

behaviours is limited. To date, investigations on the influence of 

leadership on gaze behaviour have focused on computer-based 

paradigms that do not provide any opportunity for social interaction 

(Capozzi and Ristic, 2018; Koski et al., 2015; Risko et al., 2016). The 

aim of the present study was to develop a novel approach to investigate 

how leadership shapes gaze dynamics during real-world human group 

interactions. 

Theoretical hypotheses Multi-party gaze features code implicit semantics of social gaze 

behaviours, and more specifically, leadership. 

Operational hypotheses The basic idea for establishing a relationship between social gaze 

behaviour and leadership was to conceptualize multi-party gaze features 

as patterns and to treat the analysis as a pattern classification problem: 

can a classifier applied to the visual behaviour pattern of real people 

interacting in small groups reveal the leader? 

Relationship with the 

objectives of the project 

Test social gaze behaviour can reveal the leader during real-world group 

interactions. 

Time schedule  Multimodal data recordings completed before project start. Data 

analysis was completed in the ENTIMEMENT project 

Methods  

Participants 16 groups composed of four previously unacquainted individuals 

Materials Each group of participants was asked to complete one of two versions of 

a survival task (“Winter” or “Desert”; Johnson and Johnson, 1994). The 
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task involved rank-ordering 12 ordinary items (e.g., a map, a mirror, a 

chocolate bar) based on their utility for group-surviving in a hostile 

environment. The use of pen paper was not allowed. 

Data format https://ars.els-cdn.com/content/image/1-s2.0-S2589004219301725-

mmc2.xlsx 

Experimental 

protocol/procedure 

Participants were assigned to one of four-person groups, for a total of 

sixteen groups. Eight participants classified as leaders with a democratic 

leadership style and eight participants classified as leaders with an 

autocratic leadership style were randomly assigned as ‘designated 

leaders’ to one of the sixteen groups. Forty-eight of the potential 

followers were also randomly assigned to each group. Each group of 

participants was asked to complete one of two versions of a survival 

task (see materials).  

Democratic leadership is expected to be more effective under situational 

conditions of low time-pressure, whereas autocratic leaderships is 

expected to be more effective under situational conditions of high time-

pressure (Fiedler, 2006; Pierro et al., 2003).  

To manipulate situational conditions, a time-pressure manipulation was 

applied (Chirumbolo et al., 2004; De Grada et al., 1999; Kruglanski and 

Freund, 1983; Pierro et al., 2003). Groups assigned to the high time-

pressure situation (n = 8) were instructed to perform the assigned task as 

quickly as possible, with a clear instruction that time was a critical 

demand to their task. Groups assigned to the low timepressure situation 

(n =8) were instead encouraged to take their time to reach a decision 

with no specific time demand.  

The orthogonal manipulation of leadership styles and situational 

conditions resulted in two high-fit conditions (Democratic - Low time-

pressure, Autocratic - High time-pressure) and two low-fit conditions 

(Democratic - High time-pressure, Autocratic - Low time-pressure) 

(Figure 1 A; see also SI and Figure S1 for group composition and 

manipulation checks). 

Measures Four AXISP1346 multi-view streaming cameras (1280x1024 pixels 

resolution, 20 frame per second frame rate) were used for individual 

video recording of the upper part of the body (head and shoulders) of 

each group member. Individual videos were used for VFOA modelling 

and visual behaviour features extraction. 

Results We found that social gaze behaviour distinctively identified group 

leaders. Crucially, the relationship between leadership and gaze 

behaviour generalized across democratic and autocratic leadership styles 

under conditions of low and high time-pressure, suggesting that gaze 

can serve as a general marker of leadership. These findings provide the 

first direct evidence that group visual patterns can reveal leadership 

across different social behaviours and validate a new promising method 

for monitoring natural group interactions. 

Descriptive results https://www.sciencedirect.com/science/article/pii/S2589004219301725?

via%3Dihub 

Inference statistics https://www.sciencedirect.com/science/article/pii/S2589004219301725?

via%3Dihub 
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Additional results https://www.sciencedirect.com/science/article/pii/S2589004219301725?

via%3Dihub 

Discussion https://www.sciencedirect.com/science/article/pii/S2589004219301725?

via%3Dihub 

 

 

3. HUMAN MOVEMENT DATA-SETS 

This section includes tables describing pre-existing as well as early versions of the 

movement datasets developed by EnTimeMent partners. Appendix 1 provides a 

survey of third-party movement datasets. 

3.1.1 Lightness and Fragility IMU and video dataset 

Title Lightness and Fragility IMU and video dataset 

Type IMU and video  

Question of interest Investigate movement qualitites 

Owner UNIGE 

Other ENTIMEMENT 

groups involved 

UM, freely available to the EnTimeMent consortium and the research 

community 

Participants 12 dancers 

Short description and 

objective 

The dataset consists of 120 segments of synchronized video and IMU 

data. Each segments has duration of about 10s. Videos are full-body, 

with blurred faces of the dancers, to focus only on body movement 

(without facial expression). IMU sensors with 9dof each are placed on 

wrists, ankles, and coccyx.  

Kind of data Text and video files with SMPTE timecode. Video files have the 

SMPTE code in one of the audio channels. 

Sensors XOSC IMUs and videocameras 

Privacy status Freely available to the research community 

Data format Text and mp4 video 

Link http://beatricedegelder.com/documents/Vaessen2018.pdf 

 

3.1.2 TELMI Violin Performance Dataset 

Title TELMI Violin Performance Dataset 

Type Mocap, Video, Kinect, Audio and MYO 

Question of interest Investigation of movement in violin performance, quality of the 

performance 

Owner UNIGE 

Other ENTIMEMENT 

groups involved 

Freely available to the EnTimeMent consortium and the research 

community 

Participants  

Short description and 

objective 

The dataset consists in multimodal recordings of 4 professional violinist 

from Royal College of Music of London performing 41 exercises from 

classical pedagogy repertoire, collecting in the TELMI Multimodal 

http://beatricedegelder.com/documents/Vaessen2018.pdf
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Archive. Furthermore, the dataset includes recordings of three students 

and one teacher performing a programme of 18 exercises from the 

original list of 41. 

Kind of data Mocap, audio, Kinect, EMG data and video files with SMPTE 

timecode. Video files have the SMPTE code in one of the audio 

channels. 

Sensors 13-cameras Qualysis motion capture system, cameras, MYO sensors, 

Kinect 

Privacy status             Freely available for the research community 

Data format .tsv, .qtm, .mp4, .aif, .txt 

Link TELMI Archive paper 

 

3.1.3 UNIGE EnTimeMent Multimodal Recordings Dataset 

Title UNIGE EnTimeMent Multimodal Recordings Dataset 

Type Qualisys Motion Capture data, synchronized via SMPTE with 

multichannel audio (including audio respiration), multiple professional 

videocameras, IMUs, EMG and possible other biometric data.  

Question of interest Investigation of prediction and analysis at multiple temporal scales of 

individual as well as group behaviour. 

Owner UNIGE  

Other ENTIMEMENT 

groups involved 

Consortium 

Participants Healthy adults and children 

Short description and 

objective 

Provide the necessary dataset recordings for several experiments in 

EnTimeMent (see previous section) 

Kind of data Mocap, audio, Kinect, EMG, IMU 

Sensors Qualysis motion capture cameras, videocameras, microphones, MYO, 

Kinect, IMU, XOSC and other sensors 

Privacy status            Freely available to all consortium partners. 

Data format .tsv, .qtm, .mp4, .aif, .txt (IMU and EMG) 

Link https://entimement.dibris.unige.it/user_files/CPIM-ETM-

LabelsListForRecordings.PDF 

 

3.1.4 UCL Emo-Pain dataset 

Title EmoPain 

Type Motion capture, surface electromyography 

Question of interest Movement behaviour in people with chronic pain 

Owner UCL 

Other ENTIMEMENT 

groups involved 

None 

Participants People with chronic low back pain and healthy people 

http://delivery.acm.org/10.1145/3130000/3125588/a25-volpe.pdf?ip=130.251.219.221&id=3125588&acc=OA&key=296E2ED678667973%2E9688138444F5182F%2E4D4702B0C3E38B35%2E95D967B1329302AA&__acm__=1563376339_56a9c9a346548c4819520c08cdc3559a
https://entimement.dibris.unige.it/user_files/CPIM-ETM-LabelsListForRecordings.PDF
https://entimement.dibris.unige.it/user_files/CPIM-ETM-LabelsListForRecordings.PDF
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Short description and 

objective 

The data was captured from participants while they performed physical 

exercises typically prescribed for chronic pain physical rehabilitation, 

and similar to everyday movements (sit-to-stand-to-sit, standing on one 

leg, forward reaching, bending, walking, sitting, standing) 

Kind of data Body movement data 

Sensors Full-body gyroscope sensors, surface electromyography 

Privacy status Anonymised data available to consortium partners on request, following 

GDPR and UCL research ethics restrictions 

Data format mat files 

Link Not publicly available 

 

3.1.5 IEMP Data Collection 

Title Interpersonal Entrainment in Music Performance (IEMP) Data 

Collection 

Type Audio, video and annotation data of musical performances in diverse 

genres 

Question of interest Interpersonal synchronisation and coordination in musical ensembles 

Owner DU 

Other ENTIMEMENT 

groups involved 

UNIGE, UWS 

Participants Professional and semi-professional musicians 

Short description and 

objective 

The IEMP Collection, shared publicly on Open Science Framework, 

contains recordings and annotations of musical performances in six 

genres. Contents are summarized in the table.  

Kind of data Audio, Video, and Time-stamped text annotations: musical structure, 

metre, event onsets, onsets assigned to metrical positions, movement 

extracted using Optical Flow algorithm in Eyesweb (part only). Code 

also shared, linked  under Technical Resources. 

Sensors Digital audio and video recorders 

Privacy status Publicly shared. Restrictions on non-research (inc. commercial) re-use. 

Data format WAV, MP4, CSV, TXT 

Link https://osf.io/37fws/ 

 

IEMP Data Collection Contents 

Genre Abbr. Origin Group 

size 

Instrumentation Size of 

corpus 

Dur. 

(min) 

Researcher   

https://osf.io/37fws/
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North 

Indian 

Raga 

NIR North 

India 

2-6 Sitar, sarod or 

guitar + tabla or 

vocal, 

harmonium + 

tabla (tanpura 

drone not 

analysed) 

8 raga 

performanc

es pieces, 

Mean 

duration = 

3,000 

seconds (SD 

= 582) 

413 M. Clayton, 

L. Leante 

Uruguayan 

Candombe 

UC Uruguay 3-4 Chico, piano and 

repique drums 

12 takes, M 

= 175.5s 

(SD = 30.9) 

35 L. Jure, M. 

Rocamora 

Malian 

Jembe 

MJ Mali 2-4 Jembe and 

dundun drums 

15 takes of 

3 pieces, M 

= 202s (SD 

= 69.1) 

51 R. Polak 

Cuban Son 

and Salsa 

CSS Cuba 7 Bass, Spanish 

guitar, tres, 

clave, bongos 

and other 

percussion, 

trumpet, vocals 

5 songs, M 

= 398s (SD 

= 45.5) 

33 A Poole 

Tunisian 

Stambeli 

TS Tunisia ≥4, 2 

parts 

analyse

d 

Gumbri (lute) + 

shqashiq 

(cymbals), 

vocals. Nb no 

video. 

4 tracks 

comprising 

8 pieces, M 

= 259.8s 

(SD = 

105.2) 

35 R. 

Jankowsky 

String 

Quartet 

SQ UK 4 Violin x 2, viola, 

cello. Nb no 

video. 

2 takes each 

of 2 

movements, 

M = 290.2s 

(SD = 20.3) 

  

String 

Quartet 

SQ Europe 4 Violin x 2, viola, 

cello 

2 takes each 

of 2 

movements, 

extracts 

6 M. Clayton, 

T. Eerola, K. 

Jakubowski 
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4. EARLY PUBLICATIONS FROM THE CONSORTIUM 

Scientific publications are already available from the consortium. They are available 

as Open Access, and can be found collectively from the following project web page: 

https://entimement.dibris.unige.it/documents 

  

https://entimement.dibris.unige.it/documents
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O ANNEX 1 A SURVEY OF EXISTING BODY 

MOVEMENT DATASETS 

o Survey Summary 

Survey Leaders UCL 

Survey Exclusion Criteria 
● of static pose 

● of face/hand/gaze only or single body location  

● based on top view camera only 

● not of humans or mainly of just objects or animals 

● not particularly involving movement or of sedentary activities 

●  based on movement sensor on object rather than human 

Total Number of Datasets 134 

Number by Sensor 

Category 

Based on Video only = 71; Based on Inertia sensors = 62; Based on 

Electromyography only = 1 

Number by Dataset 

Availability 

Data webpage published = 87; Data webpage not published = 57 

 

 

o Survey Details - only for the datasets with published 

webpages 

The details are in two parts (Part I - Videos only, Part II - including inertia sensors with 

electromyography), each ordered by publication year. 

 

  

Dataset Name Dataset 

Author & 

Year 

Source of 

Dataset 

Type of Data Data Size Activities in 

Data 

Data Webpage 

PART I - VIDEOS ONLY 

Large Scale 

Combined RGB-D 

Action Dataset 

Zhang et al. 

2018 

multiple 

datasets 

videos, depth videos and 

human action labels 

4953 sequences 

covering 94 human 

actions 

various https://www.uow.edu.au/~wan

qing/#Datasets 

DeepMind 

Kinetics Human 

Action Video 

dataset 

Kay et al. 

2017 

YouTube 

videos 

videos and human action 

labels 

500,000 video clips 

covering 600 human 

actions 

everyday type http://deepmind.com/kinetics 
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TenniSet Faulkner and 

Dick 2017 

YouTube 

videos  

videos and event labels 787,600 video frames 

covering 6 tennis event 

types 

tennis matches https://github.com/HaydenFaul

kner/Tennis 

Atomic Visual 

Actions  Dataset 

Gu et al. 

2017 

YouTube 

videos 

videos and human 

action/interaction labels  

392,426 video clips 

covering 60 human 

actions/interaction types 

unknown https://research.google.com/av

a/ 

Human Action 

Clips and 

Segments  Dataset 

Zhao et al. 

2017 

 YouTube 

videos 

videos and human action 

labels 

1.55M video clips 

covering 200 human 

actions 

various http://hacs.csail.mit.edu/ 

MultiTHUMOS 

dataset 

Yeung et al. 

2017 

YouTube 

videos 

videos and human action 

labels 

400 videos of 

THUMOS14 covering 

65 human actions 

(including 

THUMOS14's) 

various http://ai.stanford.edu/~syyeung

/everymoment.html 

The “something 

something” video 

database 

Goyal et al. 

2017 

Recorded in 

acted 

scenarios 

 videos (hand only) 220,847 videos covering 

174 hand-object 

interaction types 

hand-object 

interaction 

scenarios 

https://20bn.com/datasets/som

ething-something/v2 

Dataset Name Dataset 

Author & 

Year 

Source of 

Dataset 

Type of Data Data Size Activities in 

Data 

Data Webpage 

Daily Action 

Localization in 

YouTube 

Weinzaepfel 

et al. 2017 

YouTube 

videos 

videos with person 

bounding box and 

human action labels 

510 videos covering 10 

human actions 

everyday type http://thoth.inrialpes.fr/daly/ 

MSR- 

Video to Text 

Xu et al. 

2016 

Videos on 

the internet 

videos 40,000 clips everyday type http://ms-multimedia-

challenge.com/2017/dataset 

NCAA Basketball 

Dataset 

Ramanathan 

et al. 2016 

YouTube 

videos 

videos with player 

bounding box and event 

labels 

14,548 video clips 

covering 11 event types 

basketball 

games 

http://basketballattention.appsp

ot.com/#dataset 

ACT dataset Wang et al. 

2016 

YouTube 

videos 

video clips and activity 

labels 

11,234 video clips 

covering 43 activties 

unknown http://www.cs.cmu.edu/~xiaol

onw/actioncvpr.html 

Hollywood2Tubes Mettes et al. 

2016 

Movies videos and human action 

labels and bounding box 

of persons in some 

sections 

1,707 of Hollywood2 

covering 12 actions of 

Hollywood2 

unknown https://staff.fnwi.uva.nl/p.s.m.

mettes/codedata.html 
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Charades Sigurdsson et 

al. 2016 

Recorded in 

acted 

scenarios 

videos  9,848 video sequences 

covering 157 human 

actions 

household 

actvities 

https://allenai.org/plato/charad

es/ 

UWA3D 

Multiview 

Activity II Dataset 

Rahmani et 

al. 2016 

Recorded in 

acted 

scenarios 

depth videos and 

activity labels 

1,200 sequences 

covering 30 activities 

various http://staffhome.ecm.uwa.edu.

au/~00053650/databases.html 

MPII Cooking 2 Rohrbach et 

al. 2016 

Recorded in 

naturalistic 

scenarios in 

lab 

videos and human action 

labels, some also with 

labels of pose of 

anatomical segments, 

and some further with 

hand region marked 

273 videos covering 87 

human actions 

cooking https://www.mpi-

inf.mpg.de/departments/compu

ter-vision-and-multimodal-

computing/research/human-

activity-recognition/mpii-

cooking-2-dataset/ 

MERL Shopping 

Dataset 

Singh et al. 

2016 

Recorded in 

naturalistic 

scenarios in 

lab 

videos and human action 

labels 

96 videos covering 5 

human actions 

shopping http://www.merl.com/demos/

merl-shopping-dataset 

ActivityNet Heilbron et 

al. 2015 

Videos on 

the internet 

videos and human action 

labels 

19,994 videos covering 

200 human activity 

labels 

everyday type http://activity-net.org/ 

MPII Movie 

Description 

Dataset  

Rohrbach et 

al. 2015 

Movies videos with audio 

transcript 

68,337 video clips everyday type https://www.mpi-

inf.mpg.de/departments/compu

ter-vision-and-multimodal-

computing/research/vision-

and-language/mpii-movie-

description-dataset/ 

Montreal Video 

Annotation 

Dataset  

Torabi et al. 

2015 

Movies videos with audio 

transcript 

 48,986 video clips everyday type https://mila.quebec/en/publicat

ions/public-datasets/m-vad/ 

Dataset Name Dataset 

Author & 

Year 

Source of 

Dataset 

Type of Data Data Size Activities in 

Data 

Data Webpage 

THUMOS15 

Challenge Dataset 

Idrees et al. 

2017 (dataset 

was 

published in 

2015) 

YouTube 

videos 

videos and activity 

labels, with additional 

sub-action labels 

18,404 videos covering 

101 activities 

unknown http://www.thumos.info/downl

oad.html 

Office Activity  

Dataset 

Wang et al. 

2015 

Recorded in 

acted 

scenarios 

videos, depth videos, 

and activity labels 

1,180 sequences office type 

activites 

http://www.sysu-

hcp.net/resources/ 
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Sports-1M Dataset Karpathy et 

al. 2014 

YouTube 

videos 

videos and activity 

labels 

1,133,158 sequences 

covering 487 activities 

sports https://cs.stanford.edu/people/

karpathy/deepvideo/ 

Breakfast Kuehne et al. 

2014 

Recorded in 

naturalistic 

scenarios in 

lab 

videos and human action 

labels 

1,989 sequences 

covering 10 human 

actions 

cooking http://serre-

lab.clps.brown.edu/resource/br

eakfast-actions-dataset/ 

LIRIS human 

activities dataset 

Wolf et al. 

2014 

Recorded in 

acted 

scenarios 

videos, depth videos and 

activity labels (with 

bounding box) 

covering 10 activities various https://projet.liris.cnrs.fr/voir/a

ctivities-dataset/ 

joint-annotated 

HMDB 

Jhuang et al. 

2013 

Online 

videos 

video clips and human 

action labels from 

HMDB51, and 2D 

positions of full body 

joints of the subject 

928 video clips covering 

21 action categories 

from the HMDB51 

various http://jhmdb.is.tue.mpg.de/ 

Penn Action 

Dataset 

Zhang et al. 

2013 

Online 

videos 

videos and actitivity 

labels with label of 

anatomical segment 

involved and its 

bounding box 

2,326 covering 15 

activities 

sports https://github.com/dreamdrago

n/PennAction 

Mivia Action 

Dataset 

Carletti et al. 

2013 

Recorded in 

acted 

scenarios 

depth videos and human 

action labels 

500 sequences covering 

7 human actions 

various https://mivia.unisa.it/datasets/v

ideo-analysis-datasets/mivia-

action-dataset/ 

Osaka University 

Kinect Action 

Data Set 

Mansur et al. 

2013 

Recorded in 

acted 

scenarios 

videos, depth videos and 

human action labels 

covering 10 human 

actions 

sports http://www.am.sanken.osaka-

u.ac.jp/~mansur/dataset.html 

DMLSmartAction

s dataset 

Amiri et al. 

2013 

Recorded in 

acted 

scenarios 

videos, depth videos and 

human action labels 

932 videos covering 25 

human actions 

everyday type http://dml.ece.ubc.ca/data/smar

taction/ 

3D Action Pairs 

aka 

MSRActionPair 

dataset 

Oreifej and 

Liu 2013 

Recorded in 

acted 

scenarios 

depth image sequences 

and human action labels 

covering 12 human 

actions 

everyday type http://www.cs.ucf.edu/~oreifej

/HON4D.html#New%20datase

t%20-

%20MSR%20Action%20Pairs 

Dataset Name Dataset 

Author & 

Year 

Source of 

Dataset 

Type of Data Data Size Activities in 

Data 

Data Webpage 

UCF101 - Action 

Recognition Data 

Set 

Soomro et al. 

2012 

YouTube 

videos 

videos and activity 

labels 

13,320 videos covering 

101 activities 

sports, 

everyday type 

https://www.crcv.ucf.edu/resea

rch/data-sets/human-

actions/ucf101/ 
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ASLAN Kliper-Gross 

et al. 2012 

YouTube 

videos 

videos and human action 

labels 

3,631 video clips 

covering 432 human 

actions 

everyday type https://talhassner.github.io/ho

me/projects/ASLAN/ASLAN-

main.html 

ACT42 Cheng et al. 

2012 

Recorded in 

acted 

scenarios 

videos, depth videos and 

activity labels 

6,844 covering 14 

activities 

everyday type https://sites.google.com/site/qi

nleisite/Home/dataset 

BIT-Interaction 

Dataset 

Kong et al. 

2012 

Recored in 

acted 

scenarios 

videos and human 

interaction labels 

400 videos covering 8 

human interaction 

scenarios 

human-human 

interaction 

activities 

https://sites.google.com/site/al

exkongy/software 

UTKinect-

Action3D Dataset 

Xia et al. 

2012 

Recorded in 

acted 

scenarios 

videos, depth videos 200 sequences covering 

10 human actions 

everyday type http://cvrc.ece.utexas.edu/Kine

ctDatasets/HOJ3D.html 

Depth-included 

Human Action 

video 

Lin et al. 

2012 

Recorded in 

acted 

scenarios 

videos, depth videos 483 sequences covering 

23 human actions 

various http://mclab.citi.sinica.edu.tw/

dataset/dha/dha.html 

Zhang and 

colleagues 2012 

Zhang et al. 

2012 

Recorded in 

acted 

scenarios 

videos, depth videos  87 sequences covering 8 

human actions 

falls and 

movements 

with poses 

similar to falls 

http://vlm1.uta.edu/~zhangzho

ng/fall_detection/ 

Actions for 

Cooking Eggs 

Dataset 

Shimada et 

al. 2012 

Recorded in 

naturalistic 

scenarios in 

lab 

videos and depth videos 

(showing hands only) 

25 sequences covering 8 

human actions 

cooking eggs http://www.murase.m.is.nagoy

a-

u.ac.jp/KSCGR/download.htm

l 

MPII Cooking 

Activities Dataset 

Rohrbach et 

al. 2012 

Recorded in 

naturalistic 

scenarios in 

lab 

videos and human action 

labels, some also with 

labels of pose of 

anatomical regions 

44 videos covering 65 

human actions 

cooking https://www.mpi-

inf.mpg.de/departments/compu

ter-vision-and-multimodal-

computing/research/human-

activity-recognition/mpii-

cooking-activities-dataset/ 

Human Motion 

DataBase 

Kuehne et al. 

2011 

Online 

videos 

videos (full body visible 

only for about half of 

the videos and human 

action labels 

7,000 videos covering 

51 human actions (facial 

and bodily) 

various http://serre-

lab.clps.brown.edu/resource/h

mdb-a-large-human-motion-

database/ 

VideoPose2.0 Sapp et al. 

2011 

Friends, Lost 

TV series 

2 to 3 secs long video 

clips (not usually full 

body) 

44 video clips various http://bensapp.github.io/videop

ose-dataset.html 

VIRAT Video 

Dataset 

Oh et al. 

2011 

unknown videos and human action 

labels 

23 human actions everyday type http://www.viratdata.org/ 
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Dataset Name Dataset 

Author & 

Year 

Source of 

Dataset 

Type of Data Data Size Activities in 

Data 

Data Webpage 

Olympic Sports 

Dataset 

Niebles et al. 

2010 

YouTube 

videos 

videos and human action 

labels 

800 video sequences 

covering 16 human 

actions 

sports http://vision.stanford.edu/Data

sets/OlympicSports/ 

TV Human 

Interaction 

Dataset 

Patron-Perez 

et al. 2010 

TV shows video clips with upper 

body bounding box, and 

head orientation and 

interaction labels 

300 video clips  hand shake, 

high five, hug, 

kiss 

http://www.robots.ox.ac.uk/~al

onso/tv_human_interactions.ht

ml 

Multicamera 

Human Action 

Video Dataset 

Singh et al. 

2010 

Recorded video clips and human 

action labels 

1904 video clips (only 

952 is public) covering 

17 human actions 

various http://velastin.dynu.com/MuH

AVi-MAS/ 

i3DPost multi-

view and 3D 

human 

action/interaction 

database 

Gkalelis et al. 

2009 

Recorded in 

acted 

scenarios 

videos (some face only) 

and human action labels 

104 videos covering 12 

human actions (+ 

emotional facial 

expressions only) 

various http://kahlan.eps.surrey.ac.uk/i

3dpost_action/ 

UT-Interaction Ryoo and 

Aggarwal 

2009 

Recored in 

acted 

scenarios 

videos and human 

interaction labels  with 

bounding box 

20 video sequences 

covering 6 human 

interaction scenarios 

various http://cvrc.ece.utexas.edu/SDH

A2010/Human_Interaction.ht

ml 

HOHA Laptev et al. 

2008 

movies video and human action 

labels 

444 video sequences 

covering 8 human 

actions 

everyday type https://www.di.ens.fr/~laptev/a

ctions/ 

Virtual Human 

Action Silhouette 

data 

Ragheb et al. 

2008 

Artificially 

generated 

videos 180 covering 20 human 

actions 

various http://velastin.dynu.com/VIHA

SI/ 

Weizmann Action 

Dataset 

Gorelick et 

al. 2007 

Recorded in 

acted 

scenarios 

videos and human action 

labels 

90 sequences covering 

10 human actions 

various http://www.wisdom.weizmann

.ac.il/~vision/SpaceTimeActio

ns.html 

Inria Xmas 

Motion 

Acquisition 

Sequences 

Weinland et 

al. 2006 

Recorded in 

acted 

scenarios 

videos, silhoutte videos 

and human action labels 

covering 13 human 

actions 

everyday type http://4drepository.inrialpes.fr/

public/viewgroup/6 

HumanID Gait 

Challenge dataset 

Phillips et al. 

2005 

Recorded in 

acted 

scenarios 

videos 1870 videos walking http://www.eng.usf.edu/cvprg/

GaitBaseline/index.html 
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Video Event 

Detection dataset 

Ke et al. 

2005 

unknown videos and human action 

labels 

48 videos covering 4 

human actions 

everyday type http://www.yanke.org/ 

KTH Human 

Action dataset 

Schuldt et al. 

2004 

Recorded in 

acted 

scenarios 

videos and human action 

labels 

2,391 sequences 

covering 6 human 

actions 

various http://www.nada.kth.se/cvap/a

ctions/ 

Caviar Data Fisher 2004 Shopping 

mall 

surveillance 

videos and activity 

labels (with bounding 

box of subject) 

28 video sequences 

covering 6 activities 

various homepages.inf.ed.ac.uk/rbf/C

AVIARDATA1 

Dataset Name Dataset 

Author & 

Year 

Source of 

Dataset 

Type of Data Data Size Activities in 

Data 

Data Webpage 

PART II - BASED ON INERTIA SENSORS OR ELECTROMYOGRAPHY 

CMU Graphics 

Lab Motion 

Capture Database 

unknown Recorded in 

acted 

scenarios 

videos and full body 

joints positions and 

activity labels 

2,605 sequences various http://mocap.cs.cmu.edu/ 

UOW Online 

Action3D Dataset 

Tang et al. 

2018 

Recorded in 

acted 

scenarios 

videos, depth videos and 

3D full body positions 

and human action labels 

covering 20 human 

actions 

various https://www.uow.edu.au/~wan

qing/#UOWActionDatasets 

NTU RGB+D 

Action Dataset 

Shahroudy et 

al. 2016 

Recorded in 

acted 

scenarios 

videos, depth videos and 

fullbody positions and 

human action labels 

56,880 sequences 

covering 40 human 

actions 

everyday type http://rose1.ntu.edu.sg/Dataset

s/actionRecognition.asp 

UTD Multimodal 

Human Action 

Dataset 

Chen et al. 

2015 

Recorded in 

acted 

scenarios 

videos, depth videos and  

fullbody positions, 

triaxial accelerometer, 

gyroscope, and 

magnetometer data and 

human action labels 

861 sequences covering 

27 human actions 

various http://www.utdallas.edu/~cxc1

23730/UTD-MHAD.html 

Watch-n-Patch Wu et al. 

2015 

Recorded in 

acted 

scenarios 

videos, depth videos, 

fullbody positions and 

human action labels 

458 videos covering 21 

human actions 

house and 

office work 

http://watchnpatch.cs.cornell.e

du/ 

Multi-modal & 

Multi-view & 

Interactive dataset 

Xu et al. 

2015 

Recorded in 

acted 

scenarios 

videos, depth videos, 

fullbody positions and 

human action labels 

1760 sequences 

covering 22 human 

action categories 

various http://media.tju.edu.cn/datasets

.html 
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G3Di Bloom et al. 

2015 

Recorded in 

naturalistic 

scenarios in 

lab 

videos, depth videos, 

fullbody positions and 

human action labels 

covering 18 human 

actions 

gaming 

activities 

http://dipersec.king.ac.uk/G3D

/index.html 

ShakeFive (1 & 2) van Gemeren 

et al. 2014 

Recorded in 

acted 

scenarios 

video and fullbody 

positions and activity 

labels 

153 sequences covering 

8 activities 

everyday 

interaction type 

http://www2.projects.science.u

u.nl/shakefive/ 

UPCV Gait 

Dataset & UPCV 

Gaik K2 Dataset 

don't know Recorded in 

acted 

scenarios 

positions of fullbody 

joints 

not known walking http://www.upcv.upatras.gr/per

sonal/kastaniotis/datasets.html 

UPCV Action 

Dataset 

Theodorakop

oulos et al. 

2014 

Recorded in 

acted 

scenarios 

videos, depth videos, 

fullbody positions, and 

human action labels 

covering 10 human 

actions 

various http://www.upcv.upatras.gr/per

sonal/kastaniotis/datasets.html 

Northwestern-

UCLA Multiview 

Action 3D Dataset 

Wang et al. 

2014 

Recorded in 

acted 

scenarios 

videos, depth videos, 

fullbody positions and 

human action labels 

covering 10 human 

actions 

various http://users.eecs.northwestern.

edu/~jwa368/my_data.html 

Dataset Name Dataset 

Author & 

Year 

Source of 

Dataset 

Type of Data Data Size Activities in 

Data 

Data Webpage 

UCF Kinect Ellis et al. 

2013 

Recorded in 

acted 

scenarios 

positions of fullbody 

joints 

1,280 sequences 

covering 16 human 

actions 

gaming actions http://www.syedzainmasood.c

om/research.html 

IAS-Lab Action 

Dataset 

Munaro et al. 

2013 

Recorded in 

acted 

scenarios 

videos, depth videos, 

fullbody joints positions, 

and human action labels 

540 sequences covering 

15 human actions 

various http://robotics.dei.unipd.it/acti

ons/index.php/overview 

Berkeley 

Multimodal 

Human Action 

Database 

Ofli et al. 

2013 

Recorded in 

acted 

scenarios 

video and fullbody 

positions and 

accelerometer and 

human action label 

660 sequences covering 

11 human actions 

everyday type http://tele-immersion.citris-

uc.org/berkeley_mhad 

Kinect-Based 3D 

Human Interaction 

Dataset 

Hu et al. 

2013 

Recorded in 

acted 

scenarios 

positions of fullbody 

joints and human 

interaction labels 

covering 6 human 

interaction scenarios 

human-human 

interaction 

activities 

http://www.lmars.whu.edu.cn/

prof_web/zhuxinyan/DataSetP

ublish/dataset.html 
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Cornel Activity 

Dataset-120 

Koppula et 

al. 2013 

Recorded in 

acted 

scaenarios 

videos, depth videos, 

positions for  fullbody 

joints with activity 

labels  

120 sequences covering 

10 activities (parent) and 

10 human actions (child) 

everyday type http://pr.cs.cornell.edu/humana

ctivities/data.php 

Florence 3D 

Action dataset 

Seidenari et 

al. 2013 

Recorded in 

acted 

scenarios 

videos and full body 

positions and activity 

labels 

215 sequences  everday type https://www.micc.unifi.it/resou

rces/datasets/florence-3d-

actions-dataset/ 

Microsoft 

Research 

Cambridge-12 

Kinect gesture 

data set 

unknown Recorded in 

acted 

scenarios 

3D positions of joints 

and gesture labels 

594 sequences covering 

12 human actions 

unknown https://www.microsoft.com/en

-

us/download/details.aspx?id=5

2283&from=http%3A%2F%2

Fresearch.microsoft.com%2Fe

n-

us%2Fum%2Fcambridge%2F

projects%2Fmsrc12%2F 

Stony Brook 

University Kinect 

Interaction 

Dataset 

Yun et al. 

2012 

Recorded in 

acted 

scenarios 

videos, positions of 

fullbody joints, and 

activity labels 

300 sequences covering 

8 activities 

human-human 

interaction 

activities 

http://www3.cs.stonybrook.ed

u/~kyun/research/kinect_intera

ction/index.html 

MSRDailyActivit

y3D Dataset 

Wang et al. 

2012 

Recorded in 

acted 

scenarios 

videos, depth videos, 

positions of fullbody 

joints, and action labels 

320 sequences covering 

16 activities 

various https://www.uow.edu.au/~wan

qing/#Datasets 

G3D Bloom et al. 

2012 

Recorded in 

acted 

scenarios 

videos, depth videos, 

positions of full body 

and activity labels 

70 sequences covering 

20 human actions 

gaming 

activities 

http://dipersec.king.ac.uk/G3D

/ 

Physical Activity 

Monitoring for 

Aging People 

Dataset 

Reiss and 

Stricker 2012 

Recorded in 

acted 

scenarios 

accelerometer, 

gryoscope, and 

magnetometer, heart 

rate, and activity labels 

3,850,505 sequences 

covering 18 activities 

various http://archive.ics.uci.edu/ml/da

tasets/pamap2+physical+activi

ty+monitoring 

Dataset Name Dataset 

Author & 

Year 

Source of 

Dataset 

Type of Data Data Size Activities in 

Data 

Data Webpage 

Cornel Activity 

Dataset-60 

Sung et al. 

2011 & Sung 

et al. 2012 

Recorded in 

acted 

scenarios 

videos, depth videos 

positions for fullbody 

joints, and activity labels 

60 sequences covering 

12 activities 

everday type http://pr.cs.cornell.edu/humana

ctivities/data.php 
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MSR Action3D & 

MSRAction3DExt 

Dataset 

Li et al. 2010 

& Wang et 

al. 2016 

Recorded in 

acted 

scenarios 

depth map and  positions 

for joints and human 

action labels 

567 (MSR Action3D 

only) & 1379 (both) 

sequences covering 20 

human actions 

various https://www.uow.edu.au/~wan

qing/#Datasets   (MSR 

Action3D) 

Daphnet Freezing 

of Gait Data Set  

Bachlin et al. 

2010 

Recorded in 

the lab 

accelerometer and 

freezing of gait labels 

237 sequences walking https://archive.ics.uci.edu/ml/d

atasets/Daphnet+Freezing+of+

Gait 

Opportunity Roggen et al. 

2010 

Recorded in 

acted 

scenarios 

accelerometer, positions 

and human action labels  

not known everyday type http://www.opportunity-

project.eu/challengeDataset.ht

ml 

HumanEva 

datasets 

Sigal et al. 

2010 

Recorded in 

acted 

scenarios 

video and fullbody 

positions  

56 sequences covering 5 

activities 

walk, jog, 

throw/catch, 

box, gesturing   

http://humaneva.is.tue.mpg.de 

TUM Kitchen 

Data Set 

Tenorth et al. 

2009 

Recorded in 

acted 

scenarios 

videos and joint angles 

and positions  (both full 

body) and human action 

labels for the different 

anatomical regions 

not known household 

actvities 

https://ias.in.tum.de/dokuwiki/

software/kitchen-activity-data 

Carnegie Mellon 

University 

Multimodal 

Activity Database 

de La Torre 

et al. 2008 

Recorded in 

naturalistic 

scenarios in 

lab 

video, accelerometer, 

gyroscope and 

magnetometer,  

positions of  full body 

joints 

covering 17 human 

actions 

cooking http://kitchen.cs.cmu.edu/ 

Skoda Stiefmeier et 

al. 2008 

Recorded in 

naturalistic 

scenarios 

inertia sensor, force 

sensitive ressistor  and 

activity labels 

3680 sequences car assembly 

quality 

assurance 

activities 

http://har-

dataset.org/doku.php?id=wiki:

dataset 

Motion Capture 

Database HDM05 

Muller et al. 

2007 

Recorded in 

acted 

scenarios 

fullbody positions  and 

videos and activity 

labels 

1457 sequences 

covering 100 activities 

various http://resources.mpi-

inf.mpg.de/HDM05/ 

PACO Body 

Movement 

Library 

Ma et al. 

2006 

Recorded in 

acted 

scenarios 

positions of fullbody 

joints and videos and 

human action labels 

with emotional state 

labels 

4080 sequences 

covering 3 human 

actions, and 4 emotional 

states 

walking, 

knocking, 

lifting and 

throwing, with 

affective 

elements 

http://paco.psy.gla.ac.uk/index.

php/res/download-data 
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